Skip to main content
Log in

Evaluation of Microstructural Evolution of Nanostructured Yttria-stabilized Zirconia During Sintering Using Impedance Spectroscopy

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

A non-destructive evaluation (NDE) technique of impedance spectroscopy (IS) was employed for studying the sintering process of nanostructured yttria-stabilized zirconia (YSZ) after exposure at 1100 °C in air for different times. The variations within microstructure of YSZ were correlated with the EIS parameters. The results showed that the resistance and capacitance of YSZ grains (g) and grain boundaries (gb) varied with the sintering time. The resistance of YSZ g and gb increased significantly in 10 h, which may correspond to closure of pores. While during the stage from 10 to 200 h, the resistance of the g was basically consistent, and the gb decreased with the growth of g, which indicated that the gb resistance was more sensitive to grain size. The change of porosity and pore shape could be interpreted through impedance parameters. The porosity decreased and the shape of pores became smaller and rounder with the increasing sintering time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas Turbine Engine Applications, Science, 2002, 296, p 280-284

    Article  CAS  Google Scholar 

  2. A.G. Evans, M.Y. He, and J.W. Hutchinson, Mechanics-Based Scaling Laws for the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46(3-4), p 249-271

    Article  CAS  Google Scholar 

  3. U. Schulz, K. Fritscher, and M. Peters, EB-PVD Y2O3-and CeO2/Y2O3-Stabilized Zirconia Thermal Barrier Coatings—Crystal Habit and Phase Composition, Surf. Coat. Technol., 1996, 82, p 259-269

    Article  CAS  Google Scholar 

  4. C.G. Zhou, N. Wang, Z.B. Wang, S.K. Gong, and H.B. Xu, Thermal Cycling Life and Thermal Diffusivity of a Plasma-Sprayed Nanostructured Thermal Barrier Coating, Scr. Mater., 2004, 51(10), p 945-948

    Article  Google Scholar 

  5. R.S. Lima and B.R. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng. A., 2008, 485(1-2), p 182-193

    Article  Google Scholar 

  6. C.G. Zhou, N. Wang, and H.B. Xu, Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Mater. Sci. Eng. A., 2007, 452-453, p 569-574

    Article  Google Scholar 

  7. A. Rauf, Q. Yu, L. Jin, and C. Zhou, Microstructure and Thermal Properties of Nanostructured Lanthana-Doped Yttria-Stabilized Zirconia Thermal Barrier Coatings by Air Plasma Spraying, Scr. Mater., 2012, 66(2), p 109-112

    Article  CAS  Google Scholar 

  8. K. Ogawa, D. Minkov, T. Shoji, M. Sato, and H. Hashimoto, NDE of Degradation of Thermal Barrier Coating by Means of Impedance Spectroscopy, NDT & E Int., 1999, 32, p 177-185

    Article  CAS  Google Scholar 

  9. X. Wang, J.F. Mei, and P. Xiao, Determining Oxide Growth in Thermal Barrier Coatings (TBCs) Non-Destructively Using Impedance Spectroscopy, J. Mater. Sci. Lett., 2001, 20, p 47-49

    Article  Google Scholar 

  10. P. Anderson, X. Wang, and P. Xiao, Effect of Isothermal Heat Treatment on Plasma-Sprayed Yttria-Stabilized Zirconia Studied by Impedance Spectroscopy, J. Am. Ceram. Soc., 2005, 88(2), p 324-330

    Article  CAS  Google Scholar 

  11. F. Yang and P. Xiao, Nondestructive Evaluation of Thermal Barrier Coatings Using Impedance Spectroscopy, Int. J. Appl. Ceram. Technol., 2009, 6, p 381-399

    Article  CAS  Google Scholar 

  12. B. Jayaraj, S. Vishweswaraiah, V.H. Desai, and Y.H. Sohn, Electrochemical Impedance Spectroscopy of Thermal Barrier Coatings as a Function of Isothermal and Cyclic Thermal Exposure, Surf. Coat. Technol., 2004, 117-178, p 140-151

    Article  Google Scholar 

  13. J.W. Byeon, B. Jayaraj, S. Vishweswaraiah, S. Rhee, V.H. Desai, and Y.H. Sohn, Non-Destructive Evaluation of Degradation in Multi-Layered Thermal Barrier Coatings by Electrochemical Impedance Spectroscopy, Mater. Sci. Eng. A., 2005, 407(1-2), p 213-225

    Article  Google Scholar 

  14. B. Jayaraj, V.H. Desai, C.K. Lee, and Y.H. Sohn, Electrochemical Impedance Spectroscopy of Porous ZrO2-8 wt.% Y2O3 and Thermally Grown Oxide on Nickel Aluminide, Mater. Sci. Eng. A., 2004, 372(1-2), p 278-286

    Article  Google Scholar 

  15. A. Selcuk and A. Atkinson, The Evolution of Residual Stress in the Thermally Grown Oxide on Pt Diffusion Bond Coats in TBCs, Acta Mater., 2003, 51(2), p 535-549

    Article  CAS  Google Scholar 

  16. J.A. Nychka, D.R. Clark, and S. Sridharan, NDE Assessment of TBCs: An Interim Report of a Photo-Stimulated Luminescence ‘Round-Robin’ Test, Surf. Coat. Technol., 2003, 163-164, p 87-94

    Article  CAS  Google Scholar 

  17. X.Q. Ma and M. Takemoto, Quantitative Acoustic Emission Analysis of Plasma Sprayed Thermal Barrier Coatings Subjected to Thermal Shock Tests, Mater. Sci. Eng. A., 2001, 308(1-2), p 101-110

    Article  Google Scholar 

  18. A. Kucuk, C.C. Berndt, U. Senturk, and R.S. Lima, Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings. II: Acoustic Emission Response, Mater. Sci. Eng. A., 2000, 284(1-2), p 41-50

    Article  Google Scholar 

  19. A. Lashtabeg, J. Drennan, R. Knibbe, J.L. Bradley, and G.Q. Lu, Synthesis and Characterization of Macroporous Yttria Stabilised Zirconia (YSZ) Using Polystyrene Spheres as Templates, Microporous Mesoporous Mater., 2009, 117, p 395-401

    Article  CAS  Google Scholar 

  20. J.S. Cronin, J.R. Wilson, and S.A. Barnett, Impact of Pore Microstructure Evolution on Polarization Resistance of Ni-Yttria-Stabilized Zirconia Fuel Cell Anodes, J. Power Sources, 2011, 196(5), p 2640-2643

    Article  CAS  Google Scholar 

  21. N.H. Perry and T.O. Mason, Grain Core and Grain Boundary Electrical/Dielectric Properties of Yttria-Doped Tetragonal Zirconia Polycrystal (TZP) Nanoceramics, Solid State Ionics, 2010, 181(5-7), p 276-284

    Article  CAS  Google Scholar 

  22. N. Wang, C.G. Zhou, S.K. Gong, and H.B. Xu, Heat Treatment of Nanostrutured Thermal Barrier Coating, Ceram. Int., 2007, 33(6), p 1075-1081

    Article  CAS  Google Scholar 

  23. Z.L. Wu, L.Y. Ni, Q.H. Yu, and C.G. Zhou, Effect of Thermal Exposure on Mechanical Properties of a Plasma-Sprayed Nanostructured Thermal Barrier Coating, J. Therm. Spray. Technol., 2012, 21, p 169-175

    Article  CAS  Google Scholar 

  24. S.H. Song and P. Xiao, An Impedance Spectroscopy Study of High-Temperature Oxidation of Thermal Barrier Coatings, Mater. Sci. Eng. B., 2003, 97(1), p 46-53

    Article  Google Scholar 

  25. J.R. MacDonald, Impedance Spectroscopy, Ann. Biomed. Eng., 1992, 20, p 289-305

    Article  CAS  Google Scholar 

  26. T. Hilpert and E. Ivers-Tiffée, Correlation of Electrical and Mechanical Properties of Zirconia Based Thermal Barrier Coatings, Solid State Ionics, 2004, 175(1-4), p 471-476

    Article  CAS  Google Scholar 

  27. S.T. Amaral and I.L. Muller, Effect of Silicate on Passive Films Anodically Formed on Iron in Alkaline Solution as Studied by Electrochemical Impedance Spectroscopy, Corrosion, 1999, 55, p 17-23

    Article  CAS  Google Scholar 

  28. I.R. Gibson, G.P. Dransfield, and J.T.S. Irvine, Sinterability of Commercial 8 mol% Yttria-Stabilized Zirconia Powders and the Effect of Sintered Density on the Ionic Conductivity, J. Mater. Sci., 1998, 33, p 4297-4305

    Article  CAS  Google Scholar 

  29. X.J. Chen, K.A. Khor, S.H. Chan, and L.G. Yu, Influence of Microstructure on the Ionic Conductivity of Yttria-Stabilized Zirconia Electrolyte, Mater. Sci. Eng. A., 2002, 335(1-2), p 246-252

    Article  Google Scholar 

  30. D. Pérez-Coll, E. Sánchez-López, and G.C. Mather, Influence of Porosity on the Bulk and Grain-Boundary Electrical Properties of Gd-Doped Ceria, Solid State Ionics, 2010, 181(21-22), p 1033-1042

    Article  Google Scholar 

  31. M.C. Steil, F. Thevenot, and M. Kleitz, Densification of Yttria-Stabilized Zirconia, J. Electrochem. Soc., 1997, 144(1), p 390-398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Aviation Science Foundation of 2011ZF51062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungen Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, C., Ni, L. & Zhou, C. Evaluation of Microstructural Evolution of Nanostructured Yttria-stabilized Zirconia During Sintering Using Impedance Spectroscopy. J Therm Spray Tech 21, 1076–1082 (2012). https://doi.org/10.1007/s11666-012-9787-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-012-9787-5

Keywords

Navigation