Skip to main content
Log in

Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

To explore the edge effect on intrasplat cracking of thermally sprayed ceramic splats, crack patterns of splats were experimentally observed and investigated through mechanical analysis. Both the polycrystalline splats and single-crystal splats showed obvious edge effects, i.e., preferential cracking orientation and differences in domain size between center fragments and edge fragments. In addition, substrate/interface delamination on the periphery was clearly observed for single-crystal splats. Mechanical analysis of edge effect was also carried out, and it was found that both singular normal stress in the substrate and huge peeling stress and shear stress at the interface were induced. Moreover, effective relief of tensile stress in splats is discussed. The good correspondence between experimental observations and mechanical analysis is elaborated. The edge effect can be used to tailor the pattern morphology and shed further light on coating structure design and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Ohmori and C.J. Li, Quantitative Characterization of the Structure of Plasma-Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201(2), p 241-252

    Article  Google Scholar 

  2. R. Mcpherson, A Model for the Thermal-Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, 1984, 112(1), p 89-95

    Article  Google Scholar 

  3. S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma-Sprayed Coatings and Its Correlation with the Deposit Microstructure, J Therm Spray Techn, 1995, 4(1), p 75-84

    Article  Google Scholar 

  4. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  5. S. Kuroda, T. Fukushima, and S. Kitahara, Significance of Quenching Stress in the Cohesion and Adhesion of Thermally Sprayed Coatings, J Therm Spray Techn, 1992, 1(4), p 325-332

    Article  Google Scholar 

  6. C.J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J Therm Spray Techn, 2002, 11(3), p 365-374

    Article  Google Scholar 

  7. S. Rangarajan and A.H. King, Non-destructive Evaluation of Delamination in Ceramic Thin Films on Metal Substrates by Scanning Electron Microscopy, Thin Solid Films, 2001, 385(1-2), p 22-28

    Article  Google Scholar 

  8. T. Chraska and A.H. King, Effect of Different Substrate Conditions upon Interface with Plasma Sprayed Zirconia-A TEM Study, Surf Coat Tech, 2002, 157(2-3), p 238-246

    Article  Google Scholar 

  9. L. Chen, G.-J. Yang, C.-X. Li, and C.-J. Li, Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings, J Therm Spray Techn, 2016, 25(5), p 959-970

    Article  Google Scholar 

  10. I. Dewolf, J. Vanhellemont, A. Romanorodriguez, H. Norstrom, and H.E. Maes, Micro-Raman Study of Stress-Distribution in Local Isolation Structures and Correlation with Transmission Electron-Microscopy, J. Appl. Phys., 1992, 71(2), p 898-906

    Article  Google Scholar 

  11. A. Atkinson, T. Johnson, A. Harker, and S. Jain, Film Edge-induced Stress in Substrates and Finite Films, Thin Solid Films, 1996, 274(1), p 106-112

    Article  Google Scholar 

  12. S. Jain, A. Harker, A. Atkinson, and K. Pinardi, Edge-induced Stress and Strain in Stripe Films and Substrates: A Two-dimensional Finite Element Calculation, J. Appl. Phys., 1995, 78(3), p 1630-1637

    Article  Google Scholar 

  13. S.M. Hu, Film-Edge-Induced Stress in Silicon Substrates, Appl. Phys. Lett., 1978, 32(1), p 5-7

    Article  Google Scholar 

  14. S.M. Hu, Film-Edge-Induced Stress in Substrates, J. Appl. Phys., 1979, 50(7), p 4661-4666

    Article  Google Scholar 

  15. S.C. Jain, H.E. Maes, K. Pinardi, and I. DeWolf, Stresses and Strains in Lattice-Mismatched Stripes, Quantum Wires, Quantum Dots, and Substrates in Si Technology, J. Appl. Phys., 1996, 79(11), p 8145-8165

    Article  Google Scholar 

  16. X.C. Zhang, B.S. Xu, H.D. Wang, and Y.X. Wu, Analytical Modeling of Edge Effects on the Residual Stresses Within the Film/substrate Systems. I. Interfacial Stresses, J. Appl. Phys., 2006, 100(11), p 113525

    Article  Google Scholar 

  17. E. Suhir, Stresses in Bi-Metal Thermostats, J. Appl. Mech., 1986, 53(3), p 657-660

    Article  Google Scholar 

  18. E. Suhir, Interfacial Stresses in Bimetal Thermostats, J. Appl. Mech., 1989, 56(3), p 595-600

    Article  Google Scholar 

  19. E. Suhir, An Approximate Analysis of Stresses in Multilayered Elastic Thin Films, J. Appl. Mech., 1988, 55(1), p 143-148

    Article  Google Scholar 

  20. H. Yin, G. Paulino, and W. Buttlar, An Explicit Elastic Solution for A Brittle Film with Periodic Cracks, Int J Fracture, 2008, 153(1), p 39-52

    Article  Google Scholar 

  21. H. Yin, Opening-Mode Cracking in Asphalt Pavements Crack Initiation and Saturation, Road Mater Pavement, 2010, 11(2), p 435-457

    Google Scholar 

  22. Z.C. Xia and J.W. Hutchinson, Crack Patterns in Thin Films, J. Mech. Phys. Solids, 2000, 48(6-7), p 1107-1131

    Article  Google Scholar 

  23. Z. Suo and J.W. Hutchinson, Interface Crack Between Two Elastic Layers, Int J Fracture, 1990, 43(1), p 1-18

    Article  Google Scholar 

  24. Z. Suo and J.W. Hutchinson, Steady-state Cracking in Brittle Substrates Beneath Adherent Films, Int. J. Solids Struct., 1989, 25(11), p 1337-1353

    Article  Google Scholar 

  25. A. Bagchi and A.G. Evans, The Mechanics and Physics of Thin Film Decohesion and Its Measurement, Interface Sci., 1996, 3(3), p 169-193

    Article  Google Scholar 

  26. J.L. Beuth, Cracking of Thin Bonded Films in Residual Tension, Int. J. Solids Struct., 1992, 29(13), p 1657-1675

    Article  Google Scholar 

  27. J.P. Parmigiani and M.D. Thouless, The roles of toughness and cohesive strength on crack deflection at interfaces, J. Mech. Phys. Solids, 2006, 54(2), p 266-287

    Article  Google Scholar 

  28. J.W. Hutchinson and Z. Suo, Mixed-Mode Cracking in Layered Materials, Adv. Appl. Mech., 1992, 29, p 63-191

    Article  Google Scholar 

Download references

Acknowledgments

The present project is supported by National Basic Research Program (No. 2013CB035701), the Fundamental Research Funds for the Central Universities, and the National Program for Support of Top-notch Young Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Jun Yang.

Appendix

Appendix

The constitutive law in regard to thermal strain without consideration of bending problem reads

$$\varepsilon_{\text{f}}^{0} = \frac{{\sigma_{\text{f}}^{\text{i}} }}{{E_{\text{f}} }} + \alpha_{\text{f}} \Delta T = \varepsilon_{\text{f}}^{\text{i}} + \alpha_{\text{f}} \Delta T$$
$$\varepsilon_{\text{s}}^{0} = \frac{{\sigma_{\text{s}}^{\text{i}} }}{{E_{\text{s}} }} + \alpha_{\text{s}} \Delta T = \varepsilon_{\text{s}}^{\text{i}} + \alpha_{\text{s}} \Delta T$$
(27)

where ɛ 0 f and ɛ 0 s are the uniform strain of the splat and substrate without consideration of bending, respectively. Moreover, σ i f and σ i s are the uniform stress of the splat and substrate, respectively. Using the condition of the strain compatibility at the film/substrate interface gives

$$\varepsilon_{\text{f}}^{\text{i}} - \varepsilon_{\text{s}}^{\text{i}} = \left( {\alpha_{\text{s}} - \alpha_{\text{f}} } \right)\Delta T = \Delta \alpha \Delta T$$
(28)

The force balance of the whole bimaterial beams dictates

$$E_{\text{f}} \varepsilon_{\text{f}}^{\text{i}} h_{\text{f}} + E_{\text{s}} \varepsilon_{\text{s}}^{\text{i}} h_{\text{s}} = 0$$
(29)

Combination of Eq 28 and 29 gives

$$\varepsilon_{\text{f}}^{\text{i}} = \frac{{E_{\text{s}} h_{\text{s}} \Delta \alpha \Delta T}}{{E_{\text{f}} h_{\text{f}} + E_{\text{s}} h_{\text{s}} }}$$
$$\varepsilon_{s}^{\text{i}} = \frac{{ - E_{\text{f}} h_{\text{f}} \Delta \alpha \Delta T}}{{E_{\text{f}} h_{\text{f}} + E_{\text{s}} h_{\text{s}} }}$$
(30)

The moments due to uniform strain component, \(M^{\text{i}}\), can thus be expressed as

$$M^{\text{i}} = \mathop \smallint \limits_{0}^{{h_{f} }} E_{\text{f}} \varepsilon_{\text{f}}^{\text{i}} (y - \delta ){\text{d}}y + \mathop \smallint \limits_{{ - h_{\text{s}} }}^{0} E_{\text{s}} \varepsilon_{\text{s}}^{\text{i}} (y - \delta ){\text{d}}y$$
(31)

where δ is the location of the neutral axis composite beam. The quantity δ was calculated on the assumption of equivalent cross section (Ref 25) as shown in Fig. 10, which was defined as

$$\delta = \frac{{y_{\text{f}} A_{\text{f}} + y_{\text{s}} A_{\text{s}} }}{{A_{\text{f}} + A_{\text{s}} }}$$
(32)

where y f and y s are the location of the neutral axis of film and substrate, respectively. The quantities A f and A s are the equivalent cross-sectional area of film and substrate, as shown in Fig. 10(b), respectively. Therefore, δ can further be reduced to

$$\delta = \frac{{E_{\text{f}} h_{\text{f}}^{2} - E_{\text{s}} h_{\text{s}}^{2} }}{{2(E_{\text{f}} h_{\text{f}} + E_{\text{s}} h_{\text{s}} )}}$$
(33)
Fig. 10
figure 10

Procedure for finding the location of the neutral axis of a composite beam. (a) Actual cross section of bimaterial beam and (b) equivalent cross section of bimaterial beam on the assumption of equal bending stiffness

To balance the moment \(M^{\text{i}}\), an extra moment \(M^{\text{b}}\) is required, which in return gives rise to stress redistribution in bimaterial beam.

The pure bending strain due to \(M^{\text{b}}\) dictates the function form

$$\varepsilon^{\text{b}} = \frac{y - \delta }{r}$$
(34)

where r is the radius of curvature for neutral axis of composite beam.

Fig. 11
figure 11

The SEM (a) and EDS (b, c) morphologyof single-crystal LZ splats deposited on single-crystal YSZ substrate. The element shown in (b) and (c) was lanthanum (La) and yttrium (Y) corresponding to LZ splats and YSZ substrate, respectively

The bending moment, \(M^{\text{b}}\), related to the pure bending strains \(\varepsilon^{\text{b}}\), can be expressed as

$$M^{\text{b}} = \mathop \smallint \limits_{{ - h_{\text{s}} }}^{0} E_{\text{s}} \frac{{\left( {y - \delta } \right)^{2} }}{r}{\text{d}}y + \mathop \smallint \limits_{0}^{{h_{\text{f}} }} E_{\text{f}} \frac{{\left( {y - \delta } \right)^{2} }}{r}{\text{d}}y$$
(35)

The moment balance of the whole bimaterial beam follows \(M^{\text{i}} + M^{\text{b}} = 0\), which in conjunction with Eq 31, 34, and 35 dictates

$$\frac{1}{r} = \frac{3}{2} \cdot \frac{{E_{\text{s}} \varepsilon_{\text{s}}^{\text{i}} h_{\text{s}} \left( {h_{\text{s}} + 2\delta } \right) - E_{\text{f}} \varepsilon_{\text{f}}^{\text{i}} h_{\text{f}} \left( {h_{\text{f}} - 2\delta } \right)}}{{E_{\text{s}} h_{\text{s}} \left( {h_{\text{s}}^{2} + 3h_{\text{s}} \delta + 3\delta^{2} } \right) + E_{\text{f}} h_{\text{f}} \left( {h_{\text{f}}^{2} - 3h_{\text{f}} \delta + 3\delta^{2} } \right)}}$$
(36)

The total strain in the film (the upper beam) can thus be expressed as

$$\varepsilon_{\text{f}}^{\text{t}} = \alpha_{\text{f}} \Delta T + \varepsilon_{\text{f}}^{\text{i}} + \varepsilon_{\text{f}}^{\text{b}} = \alpha_{\text{f}} \Delta T + \frac{{E_{\text{s}} h_{\text{s}} \Delta \alpha \Delta T}}{{E_{\text{f}} h_{\text{f}} + E_{\text{s}} h_{\text{s}} }} + \frac{y - \delta }{r}$$
(37)

In the present study,

$$\eta = h_{\text{f}} /h_{\text{s}} = 1/500 \to 0$$
$$\mathop {\lim }\limits_{\eta \to 0} \varepsilon_{\text{f}}^{\text{i}} = (\alpha_{\text{s}} - \alpha_{\text{f}} )\Delta T$$
$$\mathop {\lim }\limits_{\eta \to 0} \delta = - \frac{{h_{s} }}{2}$$
$$\mathop {\lim }\limits_{\eta \to 0} \frac{1}{r} = \frac{{ - 6E_{\text{f}} h_{\text{f}} }}{{E_{\text{s}} h_{\text{s}}^{2} }}\Delta \alpha \Delta T = 0$$
(38)

Therefore, the strain and stress in the film can be reduced to

$$\varepsilon_{\text{f}}^{\text{t}} = - \frac{{6E_{\text{f}} h_{\text{f}} }}{{E_{\text{s}} h_{\text{s}}^{2} }}\Delta \alpha \Delta T \cdot \left( {y + \frac{{h_{\text{s}} }}{2}} \right)$$
$$\sigma_{\text{f}}^{\text{t}} = E_{\text{f}} \left[ { - \frac{{6E_{\text{f}} h_{\text{f}} }}{{E_{\text{s}} h_{\text{s}}^{2} }}\Delta \alpha \Delta T \cdot \left( {y + \frac{{h_{\text{s}} }}{2}} \right) - \alpha_{\text{f}} \Delta T} \right]$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Yang, GJ., Li, CX. et al. Edge Effect on Crack Patterns in Thermally Sprayed Ceramic Splats. J Therm Spray Tech 26, 302–314 (2017). https://doi.org/10.1007/s11666-016-0505-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-016-0505-6

Keywords

Navigation