Skip to main content
Log in

Neutron Diffraction Study of Macrostress and Microstress in Al-Al2O3-Based Corrosion Protection Coating Obtained by Cold Spray (Dynamic Metallization)

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Protective coatings based on an Al-Al2O3 metal matrix composite (MMC) were sprayed using dynamic metallization (DM), a low-pressure cold spray variant. A series of samples approximately 1 mm in thickness were sprayed using different spray process parameters (temperature, velocity) and different feedstock powder compositions (Al, Zn, Al2O3). This resulted in MMCs of different phase compositions and slightly different physical conditions of coating formation. The through-thickness residual stresses that accumulate in coatings during the spray process were studied using neutron diffraction in all phases comprising the MMCs. The overall residual stress in the coating (macrostress) was compressive, which is in good agreement with the data on residual stress observed in other cold spray coatings, accumulating as a result of the peening process. However, due to the slightly elevated spray temperature characteristic of DM in comparison with other cold spray variants, thermal stresses are also present and play an equally important role in the accumulation of residual stress in each phase. Because of the multi-phase composition and thermal mismatch between the metal and ceramic components of the MMC, inter-phase microstresses also accumulate. A micro-mechanical explanation of the observed tensile microstress in Al/Zn versus compressive stress in Al2O3 is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(\sigma_{\text{M}}\) :

Macrostress (tensor)

\(\sigma_{\mu }\) :

Microstress (tensor)

\(\sigma_{\mu }^{\alpha }\) :

Microstress of phase α

\(\sigma_{\text{tot}}^{\alpha }\) :

Total (phase) stress of phase α

\(f\) :

Volume fraction of hard particle (inclusion) phase

\(\sigma\) :

Stress averaged over the gauge volume

\(E\) :

Young’s modulus

\(E_{||}, E_{\bot}\) :

Young’s modulus for the in-plane (||) and normal (\(\bot\)) directions in coatings

\(d^{\alpha }\) :

d-spacing of phase α

\(d_{||}, d_{\bot}\) :

Measured d-spacing in-plane (||) and normal (\(\bot\)) directions

\(d_{0}\) :

Reference (macrostress-free) d-spacing

\(\left( {hkl} \right)\) :

The Miller indices of certain reflection (crystal plane)

\(2\theta\left({hkl}\right)\) :

Bragg’s (scattering) angle of (hkl) reflection

\(S_{1}^{\alpha}\left({hkl}\right), \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} S_{2}^{\alpha}\left({hkl}\right)\) :

Two (hkl)-dependent diffraction elastic constants of phase α

\(\varSigma^{\alpha }\) :

Experimentally determined phase stress of phase α

\(D^{\alpha }\) :

Deviatoric part of the microstress of phase α

\(\Delta \varepsilon_{\text{th}}\) :

Thermal mismatch strain

\(\alpha\left({\text{material}}\right)\) :

Thermal expansion coefficient of material

\(\Delta T\) :

Temperature drop from spraying to room

\(\sigma_{\text{d}}\) :

Deposition stress

ϱ:

Material’s density

\(p\) :

Porosity

References

  1. R.A. Sulit, AWS Guide for the Protection of Steel with Thermal Spray Coatings of Aluminum and Zinc and Their Alloys and Composites, in: Thermal Spray Coatings: Research, Design and Applications; Proceedings of the 5th National Thermal Spray Conference, ed. by C.C. Berndt, T.F. Bernecki (ASM International, Del Mar, 1993), pp. 661-672.

  2. M. Leclercq, Combined Effect of Zinc and Aluminum in Anticorrosion Metallic Coatings and Its Application to Thermal Spraying, in Chem + Tech’80: International Congress of Chemical Technology, Bombay, symp. 3, paper 4 (1980), pp. 1-5

  3. P.A. Papyrin, P.V. Kosarev, D.S. Klinkov, P.A. Alkimov, and P.V. Fomin, Cold Spray Technology, Elsevier, Oxford, 2007

    Google Scholar 

  4. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Adiabatic Shear Instability Based Mechanism for Particles/Substrate Bonding in the Cold-Gas Dynamic-Spray Process, Mater. Des., 2004, 25, p 681-688

    CAS  Google Scholar 

  5. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379-4394

    CAS  Google Scholar 

  6. T. Hussain, D. McCartney, P. Shipway, and D. Zhang, Bonding Mechanisms in Cold Spraying: The Contributions of Metallurgical and Mechanical Components, J. Therm. Spray Technol., 2009, 18, p 364-379

    CAS  Google Scholar 

  7. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18, p 794-808

    Google Scholar 

  8. G. Bae, Y. Xiong, S. Kumar, K. Kang, and C. Lee, General Aspects of Interface Bonding in Kinetic Sprayed Coatings, Acta Mater., 2008, 56, p 4858-4868

    CAS  Google Scholar 

  9. S. Gu and S. Kamnis, Bonding Mechanism from the Impact of Thermally Sprayed Solid Particles, Metall. Mater. Trans. A, 2009, 40, p 2664-2674

    Google Scholar 

  10. M. Grujicic, J. Saylor, D. Beasley, W. DeRosset, and D. Helfritch, Computational Analysis of the Interfacial Bonding Between Feed-Powder Particles and the Substrate in the Cold-Gas Dynamic-Spray Process, Appl. Surf. Sci., 2003, 219, p 211-227

    CAS  Google Scholar 

  11. J. Villafuerte, Modern Cold Spray: Materials, Process, and Applications, Springer, Berlin, 2015

    Google Scholar 

  12. P. Cavaliere, Cold-Spray Coatings: Recent Trends and Future perspectives, Springer, Berlin, 2017

    Google Scholar 

  13. V.K. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Taylor & Francis, London, 2007

    Google Scholar 

  14. A.I. Kashirin, O.F. Klyuev, T.V. Buzdygar, Apparatus for Gas-Dynamic Spraying of Powder Coatings, Russia, 1997

  15. A.I. Kashirin, O.F. Klyuev, T.V. Buzdygar, A.V. Shkodkin, Method for Deposition of Coatings, Russia, 1998

  16. K. Spencer, D.M. Fabijanic, and M.X. Zhang, The Use of Al-Al2O3 Cold Spray Coatings to Improve the Surface Properties of Magnesium Alloys, Surf. Coat. Technol., 2009, 204, p 336-344

    CAS  Google Scholar 

  17. P.N. Spiridonov, A.I. Kashirin, and A.V. Shkodkin, Corrosion Protection with the Dymet Coatings, Mater. Aust., 2010, 44, p 31-33

    Google Scholar 

  18. D. Dzhurinskiy, E. Maeva, E. Leshchinsky, and R.G. Maev, Corrosion Protection of Light Alloys Using Low Pressure Cold Spray, J. Therm. Spray Technol., 2012, 21, p 304-313

    CAS  Google Scholar 

  19. E. Irissou, J.-G. Legoux, B. Arsenault, and C. Moreau, Investigation of Al-Al2O3 Cold Spray Coating Formation and Properties, J. Therm. Spray Technol., 2007, 16, p 661-668

    CAS  Google Scholar 

  20. V. Luzin, K. Spencer, and M.X. Zhang, Residual Stress and Thermo-Mechanical Properties of Cold Spray Metal Coatings, Acta Mater., 2011, 59, p 1259-1270

    CAS  Google Scholar 

  21. Y. Zou, W. Qin, E. Irissou, J.-G. Legoux, S. Yue, and J.A. Szpunar, Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscatter Diffraction Characterization, Scripta Mater., 2009, 61, p 899-902

    CAS  Google Scholar 

  22. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1995

    Google Scholar 

  23. Z. Hashin, The Elastic Moduli of Heterogeneous Materials, J. Appl. Mech., 1962, 29, p 143-150

    CAS  Google Scholar 

  24. J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1957, 241, p 376-396

    Google Scholar 

  25. T. Mura, Micromechanics of Defects in Solids, Springer, Dordrecht, 1987

    Google Scholar 

  26. A.M. Al-Qutub, I.M. Allam, and M.A. Abdul Samad, Wear and Friction of Al-Al2O3 Composites at Various Sliding Speeds, J. Mater. Sci., 2008, 43, p 5797-5803

    CAS  Google Scholar 

  27. M. Kok, Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites, J. Mater. Process. Technol., 2024, 161(2005), p 381-387

    Google Scholar 

  28. H. Sevik and S.C. Kurnaz, Properties of Alumina Particulate Reinforced Aluminum Alloy Produced by Pressure Die Casting, Mater Des., 2006, 27, p 676-683

    CAS  Google Scholar 

  29. M. Sternitzke, M. Knechtel, M. Hoffman, E. Broszeit, and J. Rödel, Wear Properties of Alumina/Aluminum Composites with Interpenetrating, Networks, 1996, 79, p 121-128

    CAS  Google Scholar 

  30. O. Yılmaz and S. Buytoz, Abrasive Wear of Al2O3-Reinforced Aluminium-Based MMCs, Compos. Sci. Technol., 2001, 61, p 2381-2392

    Google Scholar 

  31. R.J. Moon, M. Tilbrook, M. Hoffman, and A. Neubrand, Al-Al2O3 Composites with Interpenetrating Network Structures: Composite Modulus Estimation, J. Am. Ceram. Soc., 2005, 88, p 666-674

    CAS  Google Scholar 

  32. R. Narayanasamy, T. Ramesh, and K.S. Pandey, Workability Studies on Cold Upsetting of Al-Al2O3 Composite Material, Mater. Des., 2006, 27, p 566-575

    CAS  Google Scholar 

  33. P. Agrawal, K. Conlon, K.J. Bowman, C.T. Sun, F.R. Cichocki, and K.P. Trumble, Thermal Residual Stresses in Co-continuous Composites, Acta Mater., 2003, 51, p 1143-1156

    CAS  Google Scholar 

  34. M. Hoffman, S. Skirl, W. Pompe, and J. Rödel, Thermal Residual Strains and Stresses in Al2O3/Al Composites with Interpenetrating Networks, Acta Mater., 1999, 47, p 565-577

    CAS  Google Scholar 

  35. S. Rech, A. Trentin, S. Vezzù, J.-G. Legoux, E. Irissou, B. Arsenault, M. Lamontagne, C. Moreau, M. Guagliano, Characterization of residual stresses in Al and Al/Al2O3 cold sprayed coatings, in International Thermal Spray Conference (ITSC) (ASM International, Las Vegas, 2009), pp. 1012-1017

  36. R.C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold Spray, J. Therm. Spray Technol., 1998, 7, p 205-212

    CAS  Google Scholar 

  37. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater., 2006, 54, p 729-742

    CAS  Google Scholar 

  38. A. Shkodkin, A. Kashirin, O. Klyuev, and T. Buzdygar, Metal Particle Deposition Stimulation by Surface Abrasive Treatment in Gas Dynamic Spraying, J. Therm. Spray Technol., 2006, 15, p 382-386

    CAS  Google Scholar 

  39. H. Koivuluoto and P. Vuoristo, Effect of Powder Type and Composition on Structure and Mechanical Properties of Cu + Al2O3 Coatings Prepared by using Low-Pressure Cold Spray Process, J. Therm. Spray Technol., 2010, 19, p 1081-1092

    CAS  Google Scholar 

  40. J.B. Cohen, N.U.E.I.D.O.M. SCIENCE, The Measurement of Stresses in Composites, Defense Technical Information Center (1985)

  41. M. Van Leeuwen, J.D. Kamminga, and E.J. Mittemeijer, Diffraction Stress Analysis of Thin Films: Modeling and Experimental Evaluation of Elastic Constants and Grain Interaction, J. Appl. Phys., 1999, 86, p 1904-1914

    Google Scholar 

  42. T. Gnaupel-Herold, ISODEC: Software for Calculating Diffraction Elastic Constants, J. Appl. Crystallogr., 2012, 45, p 573-574

    Google Scholar 

  43. P.C. Brand, H.J. Prask, and T. Gnaeupel-Herold, Residual Stress Measurements at the NIST Reactor, Phys. B, 1997, 241-243, p 1244-1245

    CAS  Google Scholar 

  44. V. Luzin, K. Spencer, M. Zhang, N. Matthews, J. Davis, and M. Saleh, Residual Stresses in Cold Spray Coatings, Cold-Spray Coatings—Recent Trends and Future Perspectives, P. Cavaliere, Ed., Springer, Berlin, 2018,

    Google Scholar 

  45. E. Kröner, Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys. A Hadrons Nuclei, 1958, 151, p 504-518

    Google Scholar 

  46. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings. 1. Planar Geometry, Thin Solid Films, 1997, 306, p 23-33

    CAS  Google Scholar 

  47. V. Luzin, A. Vackel, A. Valarezo, and S. Sampath, Neutron Through-Thickness Stress Measurements in Coatings with High Spatial Resolution, Mater. Sci. Forum, 2017, 905, p 165-173

    Google Scholar 

  48. V. Luzin, J. Matejicek, and T. Gnäupel-Herold, Through-thickness Residual Stress Measurement by Neutron Diffraction in Cu + W Plasma Spray Coatings, Mater. Sci. Forum, 2010, 652, p 50-56

    CAS  Google Scholar 

  49. V. Luzin and D. Fraser, Neutron Through-Thickness Stress Measurements in Two-Phase Coatings with High Spatial Resolution, Mater. Res. Proc., 2018, 4, p 111-166

    CAS  Google Scholar 

  50. Y. Benveniste, A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials, Mech. Mater., 1987, 6, p 147-157

    Google Scholar 

  51. R.G.C. Arridge, The Thermal Expansion and Bulk Modulus of Composites Consisting of Arrays of Spherical Particles in a Matrix, with Body- or Face-Centred Cubic Symmetry, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1992, 438, p 291-310

    Google Scholar 

  52. U.F. Kocks, C.N. Tomé, H.R. Wenk, and H. Mecking, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties, Cambridge University Press, Cambridge, 2000

    Google Scholar 

  53. O. Kirstein, V. Luzin, and U. Garbe, The Strain-Scanning Diffractometer Kowari, Neutron News, 2009, 20, p 34-36

    Google Scholar 

  54. K. Spencer, V. Luzin, N. Matthews, and M.X. Zhang, Residual Stresses in Cold Spray Al Coatings: The Effect of Alloying and of Process Parameters, Surf. Coat. Technol., 2012, 206, p 4249-4255

    CAS  Google Scholar 

  55. C.L. Hsieh and W.H. Tuan, Elastic Properties of Ceramic–Metal Particulate Composites, Mater. Sci. Eng. A, 2005, 393, p 133-139

    Google Scholar 

  56. S. Matthies, G.W. Vinel, and K. Helming, Standard Distributions in Texture Analysis: Maps for the Case of Cubic-Orthorhomic Symmetry, Akademie-Verlag, Berlin, 1987

    Google Scholar 

  57. J.-H. Cho, A.D. Rollett, and K.H. Oh, Determination of Volume Fractions of Texture Components with Standard Distributions in Euler Space, Metall. Mater. Trans. A, 2004, 35, p 1075-1086

    Google Scholar 

  58. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual-Stresses in Progressively Deposited Coatings. 2. Cylindrical Geometry, Thin Solid Films, 1997, 306, p 34-51

    CAS  Google Scholar 

Download references

Acknowledgments

V.L. would like to thank Dr. Max Avdeev (ANSTO) for his assistance with the x-ray diffraction phase analysis, Dr. Joel Davis (ANSTO) for assisting with scanning electron microscopy and Mr. Karl Toppler (ANSTO) for carrying out the four-point bending test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Luzin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Thermal Spray Technology on Advanced Residual Stress Analysis in Thermal Spray and Cold Spray Processes. This issue was organized by Dr. Vladimir Luzin, Australian Centre for Neutron Scattering; Dr. Seiji Kuroda, National Institute of Materials Science; Dr. Shuo Yin, Trinity College Dublin; and Dr. Andrew Ang, Swinburne University of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luzin, V., Spiridonov, P., Spencer, K. et al. Neutron Diffraction Study of Macrostress and Microstress in Al-Al2O3-Based Corrosion Protection Coating Obtained by Cold Spray (Dynamic Metallization). J Therm Spray Tech 29, 1437–1454 (2020). https://doi.org/10.1007/s11666-020-01077-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01077-8

Keywords

Navigation