Skip to main content
Log in

A New Family of Topp and Leone Geometric Distribution with Reliability Applications

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

In this paper, a new class of lifetime distribution, which is called Topp–Leone (J-shaped) geometric distribution, is obtained by compound of the Topp–Leone and geometric distributions. Reliability and statistical properties of the new distribution such as quantiles, moment, hazard rate, reversed hazard rate, mean residual life, mean inactivity time, entropies, moment generating function, order statistics and their stochastic orderings are obtained. Estimation of the model parameters by least squares, weighted least squares, maximum likelihood and the observed information matrix are derived. Finally, a real data set is analyzed for illustrative purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.W. Topp, F.C. Leone, A family of J-shaped frequency functions. J. Am. Stat. Assoc. 50, 209–219 (1955)

    Article  Google Scholar 

  2. S. Nadarajah, S. Kotz, Moments of some J-shaped distributions. J. Appl. Stat. 30, 311–317 (2003)

    Article  Google Scholar 

  3. J.R. Van Dorp., S. Kotz, Modeling income distributions using elevated distributions on a bounded domain. Unpublished manuscript, The George Washington University, Washington (2004)

  4. M.E. Ghitany, S. Kotz, M. Xie, On some reliability measures and their stochastic orderings for the Topp–Leone distribution. J. Appl. Stat. 32, 715–722 (2005)

    Article  Google Scholar 

  5. S. Kotz, S. Nadarajah, J-Shaped Distribution, Topp and Leone’s. Encyclopedia of Statistical Sciences, vol. 6, 2nd edn. (Wiley, New York, 2006)

    Google Scholar 

  6. M.E. Ghitany, Asymptotic distribution of order statistics from the Topp–Leone distribution. Int. J. Appl. Math. 20, 371–376 (2007)

    Google Scholar 

  7. D. Vicari, J.R. Van Dorp, S. Kotz, Two-sided generalized Topp and Leone (TS-GTL) distributions. J. Appl. Stat. 35, 1115–1129 (2008)

    Article  Google Scholar 

  8. A.I. Genç, Moments of order statistics of Topp–Leone distribution. Stat. Pap. 53(1), 117–121 (2012)

    Article  Google Scholar 

  9. R.E. Barlow, F. Proschan, Statistical Analysis of Reliability and Life Testing (Holt, Rinehart and Winston, New York, 1975)

    Google Scholar 

  10. R.C. Gupta, H.O. Akman, Mean residual life function for certain types of non-monotonic ageing. Commun. Stat. Stoch. Models 11, 219–225. Erratum, 561–562 (1995)

  11. R.E. Glaser, Bathtub and related failure rate characterizations. J. Gupta Am. Stat. Assoc. 75, 667–672 (1980)

    Article  Google Scholar 

  12. N.K. Chandra, D. Roy, Some results on the reversed hazard rate. Probab. Eng. Inf. Sci. 15, 95–102 (2001)

    Article  Google Scholar 

  13. M. Kayid, S. Izadkhah, Mean inactivity time function, associated orderings, and classes of life distributions. IEEE Trans. Reliab. 63, 593–602 (2014)

    Article  Google Scholar 

  14. A. Rényi, On measures of entropy and information, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. I (University of California Press, Berkeley, 1961), pp. 547–561

  15. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series (Volumes 1, 2 and 3) (Gordon and Breach Science Publishers, Amsterdam, 1986)

    Google Scholar 

  16. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products, 7th edn. (Elsevier, Academic Press, Amsterdam, 2007)

    Google Scholar 

  17. R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models (Holt, Rinehart and Winston, New York, 1975)

    Google Scholar 

  18. S.M. Ross, Stochastic Processes, 2nd edn. (Wiley, New York, 1996)

    Google Scholar 

  19. D. Stoyan, Comparison Methods for Queues and Other Stochastic Models (Wiley, New York, 1983)

    Google Scholar 

  20. J. Swain, S. Venkatraman, J. Wilson, Least squares estimation of distribution function in Johnson’s translation system. J. Stat. Comput. Simul. 29, 271–297 (1988)

    Article  Google Scholar 

  21. N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 1 (Wiley, New York, 1994)

    Google Scholar 

  22. E.L. Butler, Estimating the survival distribution of aluminum processing pots, Carnegie Mellon University Research Showcase (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan M. Okasha.

Appendices

Appendix 1: The Values of First Derivatives of the Log-Likelihood Function of the TLG Distribution

Differentiating Eq 39 with respect to \(\alpha ,\) \(\beta ,\) and p respectively, and equating to zero gives:

$$\begin{aligned} \frac{\partial L}{\partial \alpha }&= -\frac{2n\beta }{\alpha }+\sum\limits _{i=1}^{n}\frac{1}{\alpha -x_i}+(\beta -1)\sum\limits _{i=1}^{n}\frac{2}{2\alpha -x_i}+ 2\sum\limits _{i=1}^{n}\frac{(x_i-\alpha )(\dot{v_i})_{\alpha }}{v_i} =0, \end{aligned}$$
(42)
$$\begin{aligned} \frac{\partial L}{\partial \beta }&= \frac{n}{\beta }-2n\log \alpha +\sum\limits _{i=1}^{n}\log x_i+\sum\limits _{i=1}^{n}\log (2\alpha -x_i)-2\sum\limits _{i=1}^{n}\frac{(\dot{v_i})_{\beta }}{v_i}=0,\end{aligned}$$
(43)
$$\begin{aligned} \frac{\partial L}{\partial p}&= \frac{-n}{(1-p)}-2\sum\limits _{i=1}^{n}\frac{(\dot{v_i})_{p}}{v_i}=0. \end{aligned}$$
(44)

Appendix 2

The second derivatives of the log-likelihood function of TLG distribution with respect to \(\alpha ,\) \(\beta ,\) p are given by:

$$\begin{aligned}&\frac{\partial ^{2}L}{\partial \alpha ^{2}}= \frac{2n\beta }{\alpha ^2}-\sum\limits _{i=1}^{n}\frac{1}{(\alpha -x_i)^2}+(1-\beta )\sum\limits _{i=1}^{n}\frac{4}{(2\alpha -x_i)^2}+2\sum\limits _{i=1}^{n}\left[ \frac{3\alpha -x_i}{\alpha -x_i}\right] ^2\left[ \frac{(\dot{v_i})_{\alpha }}{v_i}\right] ^2-2\sum\limits _{i=1}^{n}\frac{(\dot{v_i})_{\alpha \alpha }}{v_i}, \\&\frac{ \partial ^{2}L}{\partial \beta ^{2}}=-\frac{n}{\beta ^2}-2\sum\limits _{i=1}^{n}\frac{(1-p)(\dot{v_i})_{\beta \beta }}{v_i^2}=0, \\&\frac{\partial ^{2}L}{\partial p ^{2}}=-\frac{n}{(1-p)^2}+2 \sum\limits _{i=1}^n\left( \frac{v_i-1}{pv_i}\right) ^2=0, \\&\frac{\partial ^{2}L}{\partial \alpha \partial \beta }=-\frac{2n}{\alpha }+\sum\limits _{i=1}^{n}\frac{2}{2\alpha -x_i}-\frac{2}{\beta }\sum\limits _{i=1}^{n} \frac{(1-p)\beta (\dot{v_i})_{\alpha \beta }+\alpha ^{2\beta }(\dot{v_i})_{\alpha }(v_i+p-1)}{v_i^2},\\&\frac{\partial ^{2}L}{\partial \alpha \partial p} =-2 \sum\limits _{i=1}^{n}\frac{(v_i+p)(\dot{v_i})_{\alpha p}-[(\dot{v_i})_{p}+1](\dot{v_i})_{\alpha }}{v_i^2}, \\&\frac{\partial ^{2}L}{\partial \beta \partial p}=-2 \sum\limits _{i=1}^{n}\frac{(\dot{v_i})_{\beta p}}{v_i^2}, \end{aligned}$$

where

$$\begin{aligned} v_{i}&= v_{i}(\alpha , \beta , p)= 1 - p + p\alpha ^{-2 \beta }(2 \alpha - x_i)^{\beta } x_i^{\beta }, \quad (\dot{ v_{i}})_{\alpha }= -2 p \beta \alpha ^{-(2 \beta +1)}(\alpha - x_i) (2 \alpha - x_i)^{\beta -1} x_i^{\beta }, \\ (\dot{ v_{i}})_{\beta }&= -p \alpha ^{-2\beta } \left( 2 \log (\alpha ) - \log (2\alpha - x_i) -\log (x_i)\right) (2\alpha - x_i)^{\beta } x_i^{\beta }, \quad (\dot{ v_{i}})_{p}=-1 + \alpha ^{-2 \beta }(2 \alpha - x_i)^{\beta } x_i^{\beta }, \\ (\dot{ v_{i}})_{\alpha \alpha }&= 2p\beta \alpha ^{-2(1+\beta )}(2\alpha - x_i)^{-2+\beta }x_i^{\beta } (2\alpha ^2(1+\beta )-4\alpha (1+\beta )x_i+(1+2\beta )x_i^2), \\ (\dot{ v_{i}})_{\beta \beta }&= p\alpha ^{-2\beta }(-2\log \alpha +\log (2\alpha -x_i)+\log x_i)^2 (2\alpha - x_i)^{\beta }x_i^{\beta }, \\ (\dot{ v_{i}})_{\alpha \beta }&= 2p\alpha ^{-1-2\beta }\left( -1+2\beta \log \alpha -\beta \left( \log (2\alpha -x_i)+\log x_i\right) \right) (\alpha - x_i)(2\alpha - x_i)^{-1+\beta }x_i^{\beta }, \\ (\dot{ v_{i}})_{\beta p}&= \alpha ^{-2\beta }(-2\log \alpha +\log (2\alpha -x_i)+\log x_i) (2\alpha - x_i)^{\beta }x_i^{\beta }, \\ (\dot{ v_{i}})_{\alpha p}&= -2\alpha ^{-(2\beta +1)}\beta (\alpha - x_i)(2\alpha - x_i)^{\beta -1}x_i^{\beta }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okasha, H.M. A New Family of Topp and Leone Geometric Distribution with Reliability Applications. J Fail. Anal. and Preven. 17, 477–489 (2017). https://doi.org/10.1007/s11668-017-0263-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-017-0263-x

Keywords

Navigation