Skip to main content
Log in

Thermodynamic Description of Ternary Fe-X-P Systems. Part 9: Fe-Al-P

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Thermodynamic descriptions of the Fe-Al-P system and its binary sub-systems, Fe-Al and Al-P, are developed in the frame of a new Fe-X-P (X = Al, Cr, Cu, Mn, Mo, Nb, Ni, Si, Ti) database. The thermodynamic parameters of the binary Fe-P system are taken from an earlier assessment and those of the Fe-Al, Al-P and Fe-Al-P systems are modified (Fe-Al, Al-P) or optimized (Fe-Al-P) in this study, using experimental thermodynamic and phase equilibrium data from the literature. The solution phases of the system (liquid, bcc_A2 and fcc_A1) are described with the substitutional solution model. The compounds are treated either as stoichiometric (Al5Fe4, Al2Fe, Al5Fe2, Al13Fe4, FeP, AlP) or as semi-stoichiometric phases (Fe3P and Fe2P). Good or reasonable correlation has been obtained between the calculated and the experimental thermodynamic and phase equilibrium data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 1: Fe-Cr-P, J. Phase Equilib. Diffus., 2014, 35, p 458-468. doi:10.1007/s11669-014-0314-x

    Article  Google Scholar 

  2. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 2: Fe-Cu-P, J. Phase Equilib. Diffus., 2014, 35, p 469-475. doi:10.1007/s11669-014-0315-9

    Article  Google Scholar 

  3. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 3: Fe-Mn-P, J. Phase Equilib. Diffus., 2014, 35, p 587-594. doi:10.1007/s11669-014-0328-4

    Article  Google Scholar 

  4. J. Miettinen, A. Pashkova, and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 4: Fe-Mo-P, J. Phase Equilib. Diffus., 2014, doi:10.1007/s11669-014-0357-z

    MATH  Google Scholar 

  5. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 5: Fe-Nb-P, J. Phase Equilib. Diffus., 2014, doi:10.1007/s11669-014-0351-5

    Google Scholar 

  6. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 6: Fe-Ni-P, J. Phase Equilib. Diffus., 2014, doi:10.1007/s11669-014-0358-y

    Google Scholar 

  7. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 7: Fe-Ti-P. J. Phase Equilib. Diffus., submitted to

  8. J. Miettinen and G. Vassilev, Thermodynamic Description of Ternary Fe-X-P Systems. Part 8: Fe-Ti-P. J. Phase Equilib. Diffus., submitted to

  9. J. Miettinen, S. Louhenkilpi, H. Kytönen, and J. Laine, IDS: Thermodynamic-Kinetic-Empirical Tool for Modeling of Solidification, Microstructure and Material Properties, Math. Comput. Simul., 2010, 80, p 1536-1550

    Article  MATH  Google Scholar 

  10. U.R. Kattner and B.P. Burton, Al-Fe (Aluminum-Iron), H. Okamoto, ed., Phase Diagrams of Binary Alloys, ASM International, Materials Park, 1993, p 12-28

  11. M. Seierstein, COST 507: Thermochemical Database for Light Metal Alloys, Volume 2, European Communities, Belgium, I. Ansara, A.T. Dinsdale, and M.H. Rand, Eds., 1998, p 123-25.

  12. B. Sundman, I. Ohnuma, N. Dupin, U. Kattner, and S. Fries, An Assessment of the Entire Al-Fe System Including D03 Ordering, Acta Mater., 2009, 57, p 2896-2908

    Article  Google Scholar 

  13. M. Jacobs and R. Schmid-Fetzer, Phase Behavior and Thermodynamic Properties in the System Fe-Al, CALPHAD, 2009, 33, p 170-178

    Article  Google Scholar 

  14. I. Ansara, C. Chatillon, H. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B. Argent, A. Watson, T. Chart, and T. Anderson, A Binary Database for III-V Compound Semiconductor Systems, CALPHAD, 1994, 18, p 177-222

    Article  Google Scholar 

  15. H. Tu, F. Yin, X. Su, Y. Liu, and X. Wang, Experimental Investigation and Thermodynamic Modelling of the Al-P-Zn System, CALPHAD, 2009, 33, p 755-760

    Article  Google Scholar 

  16. S.-M. Liang and R. Schmid-Fetzer, Thermodynamic Assessment of the Al-P system Based on Original Experimental Data, CALPHAD, 2013, 42, p 76-85

    Article  Google Scholar 

  17. J.-H. Shim, C.-S. Oh, and D.N. Lee, Thermodynamic Properties and Calculation of Phase Diagram of the Fe-P System, J. Korean Inst. Met. Mater., 1996, 34, p 1385-1393

    Google Scholar 

  18. C. Wu, W. Huang, X. Su, H. Peng, J. Wang, and Y. Liu, Experimental Investigation and Thermodynamic Calculation of the Fe-Al-P System at Low Phosphorus Contents, CALPHAD, 2012, 38, p 1-6

    Article  Google Scholar 

  19. H. Lukas, S. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge, UK, 2007

    Book  Google Scholar 

  20. V. Raghavan, Phase Diagrams for Ternary Iron Alloys, Part 3, Indian Institute of Metals, Calcutta, 1988, p 9-16

    Google Scholar 

  21. V. Raghavan, The Al-Fe-P (Aluminum-Iron-Phosphorus) System, J. Alloy Phase Diagr., 1989, 5, p 32-39

    Google Scholar 

  22. V. Raghavan, Phase Diagrams Updates and Evaluations of the Al-Fe-P, B-Fe-U, Bi-Fe-Zn, Cu-Fe-Zn, Fe-Si-Zn and Fe-Ti-V Systems, J. Alloy Phase Diagr., 2013, 34, p 230-243

    Google Scholar 

  23. R. Schmid Fetzer, Aluminum-Iron-Phosphorus, Ternary Alloys, Vol 5, VCH, Weinheim, 1992, 354-363.

  24. A. Gwyer, Über die Legierungen des Aluminums mit Kupfer, Eisen, Nickel, Kobalt, Blei und Cadmium (Alloys of Aluminum with Copper, Iron, Nickel, Cobalt, Lead and Cadmium), Z. Anorg. Chem., 1908, 57, p 113-153, in German

    Article  Google Scholar 

  25. A. Gwyer and J. Phillips, The Constitution of Alloys of Aluminum with Silicon and Iron, J. Inst. Met., 1927, 38, p 29-83

    Google Scholar 

  26. J.R. Lee, Liquidus-Solidus Relations in the System Iron-Aluminum, J. Iron Steel Inst., 1960, 194, p 222-224

    Google Scholar 

  27. E. Schürmann and H.-P. Kaiser, Beitrag zu den Schmelzgleichgewichten der Eisen-Aluminum- und Eisen-Phosphorus-Legierungen (On the Melting Equilibria of the Iron-Aluminum and Iron-Phosphorus Alloys), Arch. Eisenhüttenw., 1980, 51, p 325-327

    Google Scholar 

  28. G. Inden and W. Pepperhoff, Experimental study of the order: disorder transition in bcc Fe-Al alloys, Z. Metall., 1990, 81, p 770-773

    Google Scholar 

  29. F. Stein and M. Palm, Re-determination of Transition Temperatures in the Fe-Al System by Differential Thermal Analysis, Int. J. Mater. Res., 2007, 98, p 580-588

    Article  Google Scholar 

  30. P. Rocquet, G. Jegaden, and J. Petit, The Gamma Loop in the Fe-Al System, J. Iron Steel Inst., 1967, 205, p 437-441

    Google Scholar 

  31. E. Schürmann and H.-P. Kaiser, Thermodynamik der Eisen-Aluminum-Legierungen (Thermodynamics of the Iron-Aluminum Alloys), Arch. Eisenhüttenw., 1981, 52, p 127-130, in German

    Google Scholar 

  32. J. Chipman and T. Floridis, Activity of Aluminium in Liquid Ag-AlFe-Al, Fe-Al-C, and Fe-Al-C-Si alloys, Acta Metall., 1955, 3, p 456-459

    Article  Google Scholar 

  33. P. Gross, D. Levi, E. Dewning, G. Wilson, Physical Chemistry of Process Metallurgy, Vol 1., G.R. St Pierre, Ed., New York, 1961, p 403-412

  34. F. Woolley and J. Elliott, Heats of Solution of Aluminum, Copper, Silicon in Liquid Iron, Trans. Met. Soc. AIME, 1967, 239, p 1872-1883

    Google Scholar 

  35. H. Mitani and H. Nagai, Determination of the Activities of Aluminum in Liquid Aluminum-Iron Binary Alloys by the Bubbling Method, J. Jpn. Inst. Met., 1968, 32, p 752-755

    Google Scholar 

  36. G. Belton and R. Fruehan, Spectrometric Determination of Activities in Iron-Aluminum and Silver-Aluminum Liquid Alloys, Trans. Met. Soc. AIME, 1969, 245, p 113-117

    Google Scholar 

  37. R. Hultgren, D. Desai, D. Hawkins, M. Gleiser, and K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys, American Society for Metals, Materials Park, OH, 1973

    Google Scholar 

  38. E. Ichise, T. Yamauchi, and T. Mori, Knudsen Cell-Mass Spectrometric Study of the Thermodynamics of Fe-Al Alloys, Tetsu to Hagane, 1977, 63, p 417-424, in Japan

    Google Scholar 

  39. K. Rzyman, Z. Moser, A. Miodownik, L. Kaufman, R. Watson, and M. Weinert, Enthalpies or Formation of AlFe: Experiment Versus Theor, CALPHAD, 2000, 24, p 309-318

    Article  Google Scholar 

  40. J. Breuer, A. Grün, F. Sommer, and E. Mittemeijer, Enthalpy of Formation of B2-Fe1−x Alx and B2-(Ni, Fe)1−x Al x , Metall. Mater. Trans. B, 2001, 32B, p 913-918

    Article  Google Scholar 

  41. L. Bencze, D. Raj, W. Oates, J. Herrmann, L. Singheiser, and K. Hilpert, Thermodynamic Investigation of the A2/B2 Region of the Fe-Al System by Knudsen effusion Mass Spectrometry, Metall. Mater. Trans. A, 2003, 34A, p 2409-2419

    Article  Google Scholar 

  42. D. Raj, L. Bencze, D. Kath, W. Dates, J. Herrmann, and L. Singheiser, Thermodynamic Activity Measurements in the B2 Phases of the Fe-Al and Ni-Al Systems, Intermetallics, 2003, 11, p 1119-1124

    Article  Google Scholar 

  43. S. Radcliffe, B. Averbach, and M. Cohen, Relative Thermodynamic Properties of Solid Iron-Aluminum Alloys, Acta Metall., 1961, 9, p 169-176

    Article  Google Scholar 

  44. J. Eldrich and K. Komarek, Thermodynamic Properties of Solid Iron-Aluminum Alloys, Trans. Met. Soc. AIME, 1964, 230, p 226-233

    Google Scholar 

  45. N. Jacobson and C. Mehrotra, Thermodynamics of Iron-Aluminum Alloys at 1573K, Metall. Trans. B, 1993, 24B, p 481-486

    Article  ADS  Google Scholar 

  46. H. Kleykamp and H. Glasbrenner, Thermodynamic Properties of Solid Aluminum-Iron Alloys, Z. Metall., 1997, 88, p 230-235

    Google Scholar 

  47. F. Körber, W. Oelsen, and H. Lichtenberg, Auf der Thermochemie von Legierungen. II. Direkte Bestimmung der Bildungswärme von ternären Legierungen des Systems Fe-Ni-Al, Fe-Co-Al, Cu-Ni-Al, Fe-Al-Si, sowie bestimmte Legierungen der Cu-Mn-Al-System (On the thermochemistry of alloys. II. Direct determination of the heat of formation of ternary alloys of the system Fe-Ni-Al, Fe-Co-Al, Cu-Ni-Al, Fe-Al-Si, as well as Certain Alloys of the Cu-Mn-Al System). Mitt. KWI für Eisenforsch., 1937, 19, p 131-159 [in German]

  48. A. Sinha and L. Balasundaram, Curie temperature of Iron-Aluminum and Iron-Silicon Alloys, Trans. Indian Inst. Met., 1967, 20, p 21-24

    MATH  Google Scholar 

  49. W. Köster and T. Gödecke, Physikalische Messungen an Eisen-Aluminum-Legierungen mit 10 bis 50 at.% Al (Physical Measurements of Fe-Al Alloys with 10 to 50 at.% Al), Z. Metall., 1980, 71, p 765-769, in German

    Google Scholar 

  50. S. Beer, The Solution of Aluminum Phosphide in Aluminum, J. Electrochem. Soc., 1969, 116, p 263-265

    Article  Google Scholar 

  51. A. McAllster, The Al-P (Aluminum-Phosphorus) System, Bull. Alloy Phase Diagr., 1985, 6, p 222-224

    Article  Google Scholar 

  52. H. Lescuyer, M. Allibert, and G. Laslaz, Solubility and Precipitation of AlP in Al-Si Melts Studied with a Temperature Controlled Filtration Technique, J. Alloys Compd., 1998, 279, p 237-244

    Article  Google Scholar 

  53. E. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980

    Google Scholar 

  54. I. Barin, F. Sauert, E. Schultze-Rhonhof, and W. Sheng, Thermochemical Data of Pure Substances, VCH Verlagesellchaft mbH, Weinheim, Germany, 1989

    MATH  Google Scholar 

  55. C. Wang and M. Zaheervuddin, Preparation and Properties of Aluminum Phosphide, J. Inorg. Nucl. Chem., 1963, 25, p 326-327

    Article  Google Scholar 

  56. W. Kischio, Bildungsentalpie von Aluminumphosphid (Enthalpy of Formation of the Aluminium Phosphide), J. Inorg. Nucl. Chem., 1965, 27, p 750-751, in German

    Article  Google Scholar 

  57. S. Martosudirdjo and J. Pratt, Calorimetric Studies on the Heats of Formation of IIIB-VB Adamantine Phases, Thermochim. Acta, 1974, 10, p 23-31

    Article  Google Scholar 

  58. S. Peviak and A. Sandulova, Tepмoдинaмичecкиe xapaктepиcтики фocфидa aлюминия (Thermodynamic Characteristics of Aluminum Phosphide), Izv. Akad. Nauk SSSR Neorg. Mater., 1974, 10, p 146-147, in Russian

    Google Scholar 

  59. R. Vogel and H. Klose, Das Zustandsschaubild Eisen-Eisenphosphid-Aluminumphosphid-Aluminum (The Phase Diagram of Iron-Iron Phosphide–Aluminum Phosphide-Aluminum System), Arch. Eisenhüttenwes., 1952, 23, p 287-291, in German

    Google Scholar 

  60. H. Kaneko, T. Nishizawa, K. Tamaki, and A. Tanifuji, Solubility of Phosphorus in α and γ Iron, Nippon Kinzoku Gakkai Shi, 1965, 29, p 166-171, in Japanese

    Google Scholar 

  61. K. Yamada and E. Kato, Mass Spectrometric Determination of Activities of Phosphorus in Liquid Fe-P-Si, Al, Ti, V, Cr Co, Ni, Nb And Mo Alloys, Tetsu to Hagane, 1979, 65, p 273-280

    Google Scholar 

  62. K. Yamada and E. Kato, Effect of Dilute Concentrations of Si, Al, Ti, V, Cr Co, Ni, Nb and Mo on the Activity Coefficient of P in Liquid Iron, Trans. Iron Steel Inst. Jpn., 1983, 23, p 51-55

    Article  Google Scholar 

  63. A. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425

    Article  Google Scholar 

  64. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, CALPHAD, 2002, 26, p 273-312

    Article  Google Scholar 

  65. I. Edgar, Solubility of Iron in Solid Aluminum, Trans. AIME, 1948, 180, p 225-229

    Google Scholar 

  66. C. Crussard and F. Aubertin, Etude thermo´electrique et thermodynamique d’alliage `a base d’aluminum contenant Mg, Si, Fe ou Ti (Thermoelectric and Thermodynamic Investigation of Aluminium Based Alloys Containing Mg, Si, Fe or Ti), Rev. Met., 1949, 46, p 661-675, in French

    Google Scholar 

  67. A. Oscarsson, W. Hutchinson, H. Ekström, D. Dickson, C. Simensen, and G. Raynaud, A Comparison of Different Procedures for Determination of Iron in Solid Solution in Aluminum, Z. Metall., 1988, 79, p 600-604

    Google Scholar 

Download references

Acknowledgments

Financial support from the Finnish Funding Agency for Technology and Innovation (TEKES) is gratefully acknowledged by Dr J. Miettinen and Prof. S. Louhenkilpi. The research was carried out as part of the Finnish Metals and Engineering Competence Cluster (FIMECC)’s SIMP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gueorgui Vassilev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miettinen, J., Louhenkilpi, S. & Vassilev, G. Thermodynamic Description of Ternary Fe-X-P Systems. Part 9: Fe-Al-P. J. Phase Equilib. Diffus. 36, 317–326 (2015). https://doi.org/10.1007/s11669-015-0383-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0383-5

Keywords

Navigation