Skip to main content
Log in

Formation of Random Solid Solution in Multicomponent Alloys: from Hume-Rothery Rules to Entropic Stabilization

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

As proposed in the 1920s, the empirical Hume-Rothery rules have been guiding the alloy design for random solid solutions. In contrast, the recent proposal by Yeh et al. (Adv Eng Mater 6(5):299–303, 2004) suggested that formation of random solid solution could be attributed to the maximized configurational entropy of mixing of multicomponent alloys, also known as high entropy alloys. By taking into account the non-ideal mixing of atoms with inter-atomic correlations (correlated mixing), here we suggest that the idea of entropic stabilization could be theoretically connected with the Hume-Rothery rules. The non-ideal formulation of the configurational entropy of mixing of a multicomponent alloy rationalizes the recent data obtained from experiments and simulations, which show the temperature dependence of the configurational entropy of mixing, the metastability of random solid solution observed at a low temperature, and the coupled effect of atomic size and chemical bond misfit on the stability of random solid solution. Finally, we discuss the measures that one can take to maximize the configurational entropy of a multicomponent alloy by considering the possible correlations among their constituent elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299-303

    Article  Google Scholar 

  2. U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases, CRC Press, Boca Raton, 2016

    Google Scholar 

  3. Y.F. Ye, C.T. Liu, and Y. Yang, A Geometric Model for Intrinsic Residual Strain and Phase Stability in High Entropy Alloys, Acta Mater., 2015, 94, p 152-161

    Article  Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater Sci., 2014, 61, p 1-93

    Article  Google Scholar 

  5. J.D. Eshelby, The Continuum Theory of Lattice Defects, Solid State Phys., 1956, 3, p 79–144. doi:10.1016/S0081-1947(08)60132-0

    Article  Google Scholar 

  6. T. Egami, Atomic Level Stresses, Prog. Mater. Sci., 2011, 56(6), p 637-653

    Article  Google Scholar 

  7. T. Egami and Y. Waseda, Atomic Size Effect on the Formability of Metallic Glasses, J. Non-Cryst. Solids, 1984, 64(1-2), p 113-134

    Article  ADS  Google Scholar 

  8. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375-377, p 213-218

    Article  Google Scholar 

  9. E.J. Pickering and N.G. Jones, High-Entropy Alloys: A Critical Assessment of Their Founding Principles and Future Prospects, Int. Mater. Rev., 2016, 61(3), p 183-202

    Article  Google Scholar 

  10. D.B. Miracle and O.N. Senkov, A Critical Review of High Entropy Alloys and Related Concepts, Acta Mater., 2017, 122, p 448-511

    Article  Google Scholar 

  11. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21(6), p 433-446

    Article  Google Scholar 

  12. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-Entropy Alloy: Challenges and Prospects, Mater. Today, 2016, 19(6), p 349-362

    Article  Google Scholar 

  13. G. Adam and J.H. Gibbs, On Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids, J. Chem. Phys., 1965, 43, p 139-146

    Article  ADS  Google Scholar 

  14. P.G. Debenedetti and F.H. Stillinger, Supercooled Liquids and the Glass Transition, Nature, 2001, 410(6825), p 259-267

    Article  ADS  Google Scholar 

  15. L. Angelam and G. Foffi, Configurational Entropy of Hard Spheres, J. Phys. Condens. Matter, 2007, 19, p 256207

    Article  ADS  Google Scholar 

  16. I. Ford, Statistical Models of Entropy, Statistical Physics, Wiley, New York, 2013, p 119-135

    Google Scholar 

  17. L.K. Nash, Elements of Statistical Thermodynamics, 2nd ed., Dover Publication Inc, Mineola, 2006

    Google Scholar 

  18. J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM, 2013, 65(12), p 1759-1771

    Article  Google Scholar 

  19. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe, Ab Initio Thermodynamics of the CoCrFeMnNi High Entropy Alloy: Importance of Entropy Contributions Beyond the Configurational One, Acta Mater., 2015, 100, p 90-97

    Article  Google Scholar 

  20. Q.F. He, Y.F. Ye, and Y. Yang, The Configurational Entropy of Mixing of Metastable Random Solid Solution in Complex Multicomponent Alloys, J. Appl. Phys., 2016, 120(15), p 154902

    Article  ADS  Google Scholar 

  21. G.A. Mansoori, N.F. Carnahan, K.E. Starling, and T.W. Leland, Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres, J. Chem. Phys., 1971, 54(4), p 1523-1525

    Article  ADS  Google Scholar 

  22. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, The Generalized Thermodynamic Rule for Phase Selection in Multicomponent Alloys, Intermetallics, 2015, 59, p 75-80

    Article  Google Scholar 

  23. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534-538

    Article  Google Scholar 

  24. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, Design of High Entropy Alloys: A Single-Parameter Thermodynamic Rule, Scr. Mater., 2015, 104, p 53-55

    Article  Google Scholar 

  25. Y.F. Ye, X.D. Liu, S. Wang, C.T. Liu, and Y. Yang, The General Effect of Atomic Size Misfit on Glass Formation in Conventional and High-Entropy Alloys, Intermetallics, 2016, 78, p 30-41

    Article  Google Scholar 

  26. L. Ma, L. Wang, T. Zhang, and A. Inoue, Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M = Fe Co, Ni) Alloys, Mater. Trans., 2002, 43(2), p 277-280

    Article  Google Scholar 

  27. Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George, Recovery, Recrystallization, Grain Growth and Phase Stability of a Family of FCC-Structured Multi-component Equiatomic Solid Solution Alloys, Intermetallics, 2014, 46, p 131-140

    Article  Google Scholar 

  28. M. Widom, Prediction of Structure and Phase Transformations, High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, J.-W. Yeh, P.K. Liaw, and Y. Zhang, Ed., Springer International Publishing, Cham, 2016, p 267-298

  29. Z. Liu, Y. Lei, C. Gray, and G. Wang, Examination of Solid-Solution Phase Formation Rules for High Entropy Alloys from Atomistic Monte Carlo Simulations, JOM, 2015, 67(10), p 2364-2374

    Article  Google Scholar 

  30. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks, Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys, Phys. Rev. X, 2015, 5(1), p 011041

    Google Scholar 

  31. Y.F. Ye, Q. Wang, Y.L. Zhao, Q.F. He, J. Lu, and Y. Yang, Elemental Segregation in Solid-Solution High-Entropy Alloys: Experiments and Modeling, J. Alloy. Compd., 2016, 681, p 167-174

    Article  Google Scholar 

  32. Z. An, H. Jia, Y. Wu, P.D. Rack, A.D. Patchen, Y. Liu, Y. Ren, N. Li, and P.K. Liaw, Solid-Solution CrCoCuFeNi High-Entropy Alloy Thin Films Synthesized by Sputter Deposition, Mater. Res. Lett., 2015, 3(4), p 203-209

    Article  Google Scholar 

  33. E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the Equiatomic High-Entropy Alloy CrMnFeCoNi, Scr. Mater., 2016, 113, p 106-109

    Article  Google Scholar 

  34. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George, Decomposition of the Single-Phase High-Entropy Alloy CrMnFeCoNi After Prolonged Anneals at Intermediate Temperatures, Acta Mater., 2016, 112, p 40-52

    Article  Google Scholar 

  35. B. Linder, Thermodynamics and Introductory Statistical Mechanics, Wiley, New York, 2004

    Book  Google Scholar 

  36. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical Properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys, Intermetallics, 2011, 19(5), p 698-706

    Article  Google Scholar 

  37. X. Yang, Y. Zhang, and P.K. Liaw, Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys, Procedia Eng., 2012, 36, p 292-298

    Article  Google Scholar 

  38. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory High-Entropy Alloys, Intermetallics, 2010, 18(9), p 1758-1765

    Article  Google Scholar 

  39. M.C. Gao, B. Zhang, S.M. Guo, J.W. Qiao, and J.A. Hawk, High-Entropy Alloys in Hexagonal Close-Packed Structure, Metall. Mater. Trans. A, 2016, 47(7), p 3322-3332

    Article  Google Scholar 

  40. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams, JOM, 2014, 66(10), p 1984-1992

    Article  Google Scholar 

  41. M. Feuerbacher, M. Heidelmann, and C. Thomas, Hexagonal High-Entropy Alloys, Mater. Res. Lett., 2015, 3(1), p 1-6

    Article  Google Scholar 

  42. Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen, and Y. Zhang, A Hexagonal Close-Packed High-Entropy Alloy: The Effect of Entropy, Mater. Des., 2016, 96, p 10-15

    Article  Google Scholar 

  43. J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, Anomalous decrease in X-ray Diffraction Intensities of Cu-Ni-Al-Co-Cr-Fe-Si Alloy Systems with Multi-principal Elements, Mater. Chem. Phys., 2007, 103(1), p 41-46

    Article  Google Scholar 

  44. Y.X. Zhuang, H.D. Xue, Z.Y. Chen, Z.Y. Hu, and J.C. He, Effect of Annealing Treatment on Microstructures and Mechanical Properties of FeCoNiCuAl High Entropy Alloys, Mater. Sci. Eng. A, 2013, 572, p 30-35

    Article  Google Scholar 

  45. Y. Zhang, S.G. Ma, and J.W. Qiao, Morphology Transition from Dendrites to Equiaxed Grains for AlCoCrFeNi High-Entropy Alloys by Copper Mold Casting and Bridgman Solidification, Metall. Mater. Trans. A, 2012, 43(8), p 2625-2630

    Article  Google Scholar 

  46. C. Li, J.C. Li, M. Zhao, and Q. Jiang, Effect of Alloying Elements on Microstructure and Properties of Multiprincipal Elements High-Entropy Alloys, J. Alloy. Compd., 2009, 475(1-2), p 752-757

    Article  Google Scholar 

  47. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Accelerated Exploration of Multi-principal Element Alloys with Solid Solution Phases, Nat. Commun., 2015, 6, p 6529

    Article  ADS  Google Scholar 

  48. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2-3), p 233-238

    Article  Google Scholar 

  49. C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Microstructure Characterization of Al x CoCrCuFeNi high-Entropy Alloy System with Multiprincipal Elements, Metall. Mater. Trans. A, 2005, 36(4), p 881-893

    Article  Google Scholar 

  50. Z. Hu, Y. Zhan, G. Zhang, J. She, and C. Li, Effect of Rare Earth Y Addition on the Microstructure and Mechanical Properties of High Entropy AlCoCrCuNiTi Alloys, Mater. Des., 2010, 31(3), p 1599-1602

    Article  Google Scholar 

  51. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid Solution Alloys of AlCoCrFeNiTix with Excellent Room-Temperature Mechanical Properties, Appl. Phys. Lett., 2007, 90(18), p 181904

    Article  ADS  Google Scholar 

  52. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel Microstructure and Properties of Multicomponent CoCrCuFeNiTix Alloys, Intermetallics, 2007, 15(3), p 357-362

    Article  Google Scholar 

  53. J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chou, Formation of Simple Crystal Structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V Alloys with Multiprincipal Metallic Elements, Metall. Mater. Trans. A, 2004, 35(8), p 2533-2536

    Article  Google Scholar 

  54. X.Q. Gao, K. Zhao, H.B. Ke, D.W. Ding, W.H. Wang, and H.Y. Bai, High Mixing Entropy Bulk Metallic Glasses, J. Non-Cryst. Solids, 2011, 357(21), p 3557-3560

    Article  ADS  Google Scholar 

  55. A. Takeuchi, N. Chen, T. Wada, Y. Yokoyama, H. Kato, A. Inoue, and J.W. Yeh, Pd20Pt20Cu20Ni20P20 High-Entropy Alloy as a Bulk Metallic Glass in the Centimeter, Intermetallics, 2011, 19(10), p 1546-1554

    Article  Google Scholar 

  56. H.Y. Ding and K.F. Yao, High Entropy Ti20Zr20Cu20Ni20Be20 Bulk Metallic Glass, J. Non-Cryst. Solids, 2013, 364, p 9-12

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research of Y.Y. is supported by the City University of Hong Kong through the UGC Block Grant with the Project No 9610366. Y.Y. is also thankful to Prof. David Srolovitz (University of Pennsylvania, PA, USA) for the insightful discussions during his short visit of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yang.

Appendix

Appendix

For a microcanonic ensemble, let us assume the occurrence probability of the individual microstate being equal. Furthermore, the number (Ω) of the microstate corresponding to the equilibrium macrostate is overwhelmingly large compared to others, which can be expressed as \(\ln \varOmega = \ln N! + \sum\limits_{i} {n_{i} \ln g_{i} } - \sum\limits_{i} {\ln n_{i} !}\). For a large N, we can take Stirling’s approximation \(\ln N! = N\ln N - N\) and, therefore, \(\ln \varOmega = N\ln N + \sum\limits_{i} {n_{i} \ln \frac{{g_{i} }}{{n_{i} }}}\). Maximizing ln Ω subjected to the two constraints dE = ∑  i ɛ i dn i  = 0 and dN = ∑  i dn i  = 0 leads to

$$d\left( {\ln \varOmega } \right) - \alpha dN - \beta dE = \sum\limits_{i} {\left( {\ln \frac{{g_{i} }}{{n_{i} }} - \alpha - \beta \varepsilon_{i} } \right)} dn_{i} = 0$$
(8)

where E is the potential energy; α and β are the Lagrangian multipliers. For any arbitrary change of dn i , (8) holds only if \(\ln \frac{{g_{i} }}{{n_{i} }} - \alpha - \beta \varepsilon_{i} = 0\). This leads to the Maxwell–Boltzmann distribution \(n_{i} = g_{i} e^{{ - \alpha - \beta \varepsilon_{i} }}\). Define the partition function \(Z = \sum\limits_{i} {g_{i} e^{{ - \beta \varepsilon_{i} }} }\), the particle number N of the system can be expressed as \(N = \sum\limits_{i} {g_{i} e^{{ - \alpha - \beta \varepsilon_{i} }} = e^{ - \alpha } Z}\) or e α = N/Z. As a result, the expression of ln Ω can be simplified to ln Ω = N ln Z + βE. Furthermore, for a canonic ensemble (constant temperature and constant volume), it can be shown that β = 1/k B T[35] and thus \(\ln \varOmega = N\ln Z + \frac{E}{{k_{B} T}}\). Taking a small fluctuation in the configurational energy E, we have \(d\left( {\ln \varOmega } \right) = \frac{dE}{{k_{B} T}}\). According to the first law of thermodynamics, dE = δQ. Thus \(d\left( {\ln \varOmega } \right) = \frac{\delta Q}{{k_{B} T}} = \frac{dS}{{k_{B} }}\). Finally, we obtain:

$$S = k_{B} \ln \varOmega$$
(9)

Here, it is worth noting that Ω in the Boltzmann entropy formula corresponds to the fixed potential energy E. Any disturbance in the potential energy E will cause a change in the Ω and thus the configurational entropy S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q.F., Ye, Y.F. & Yang, Y. Formation of Random Solid Solution in Multicomponent Alloys: from Hume-Rothery Rules to Entropic Stabilization. J. Phase Equilib. Diffus. 38, 416–425 (2017). https://doi.org/10.1007/s11669-017-0560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-017-0560-9

Keywords

Navigation