Skip to main content
Log in

Amoxicillin removal from aqueous solutions using hollow fibre supported liquid membrane: kinetic study

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Amoxicillin was removed from aqueous solutions using hollow fibre supported liquid membrane system (HFSLM). After evaluation of the influencing variables, the highest permeation coefficient of amoxicillin reached 2.778 × 10−4 ms−1 when the length of hollow fibres was 15 cm and the operating time was 60 min. Then, the reaction flux models of extraction and stripping were calculated. Thereafter, the modelling results were compared with the experimental data at standard deviations of 2.07 and 3.19%. In the comparison of carrier and diluent, the best conditions were achieved when Aliquat 336 and 1-Decanol were used. Results showed that amoxicillin extraction and stripping were of first and zero reaction orders; their reaction rate constants were 0.0344 min−1 and 0.0445 mg/L·min, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

AMOX :

Anionic compound of amoxicillin

C :

Concentration of amoxicillin (mg/L)

C in,f :

Initial concentration of amoxicillin in feed solution (mg/L)

C t,f :

Concentration of amoxicillin in feed solution at any time (mg/L)

C t,s :

Concentration of amoxicillin in stripping solution at any time (mg/L)

Cl :

Chloride ions

C i :

Molar concentration (mol/L)

ΔG 0 :

Gibbs free-energy change (J/mol)

ΔH 0 :

Enthalpy change (kJ/mol)

i :

Integer number

k f :

Reaction rate constant of amoxicillin extraction with Aliquat 336 (min−1)

k s :

Reaction rate constant of amoxicillin stripping with chloride ions (mg/L min)

K eq,f :

Equilibrium constant of amoxicillin extraction with carrier

L :

Length of hollow fibre (m)

m :

Reaction order of amoxicillin extraction with carrier

n :

Reaction order of amoxicillin stripping with chloride ions

N :

Number of data

q :

Flow rate of solution (mL/min)

[Q +AMOX]:

Complex species of amoxicillin and Aliquat 336

Q + Cl :

Compound of Aliquat 336

r :

Amoxicillin reaction rate

R 2 :

Squared correction coefficients

ΔS 0 :

Entropy change (J/mol K)

t :

Time (min)

T :

Operating temperature (K)

f:

Feed phase

m:

Membrane phase

s:

Stripping phase

References

  • Adlnasab L, Ebrahimzadeh H, Yamini Y (2012) A three phase dispersive liquid–liquid microextraction technique for the extraction of antibiotics in milk. Microchim Acta 179:179–184. doi:10.1007/s00604-012-0843-0

    Article  CAS  Google Scholar 

  • Alguacil FJ, Caravaca C, Martın MI (2003) Transport of chromium(VI) through a Cyanex 921-supported liquid membrane from HCl solutions. J Chem Technol Biotechnol 78:1048–1053. doi:10.1002/jctb.903

    Article  CAS  Google Scholar 

  • Alguacil FJ, Alonso M, López-Delgado A (2006) Membrane-based extraction of Nickel(II) using the mixture acorga M5640 and DP-8R as carrier. J Braz Chem Soc 17(5):839–843. doi:10.1590/S0103-50532006000500004

    Article  CAS  Google Scholar 

  • Beltran A, Marc RM, Cormack PAG, Sherrington DC, Borrull F (2008) Selective solid-phase extraction of amoxicillin and cephalexin from urine samples using a molecularly imprinted polymer. J Sep Sci 31:2868–2874. doi:10.1002/jssc.200800085

    Article  CAS  Google Scholar 

  • Bora MM, Dutta NN (2000) Extraction equilibria of cephalosporin antibiotics with Aliquat 336. J Chem Eng Data 45:399–403. doi:10.1021/je990241q

    Article  CAS  Google Scholar 

  • Bora MM, Borthakur S, Rao PG, Dutta NN (2008) Study on the reactive extraction and stripping kinetics of certain β-lactam antibiotics. Chem Eng Process 47:1–8. doi:10.1016/j.cep.2007.08.008

    Article  CAS  Google Scholar 

  • Bringas E, San Roman MF, Irabien JA, Ortiz I (2009) An overview of the mathematical modeling of liquid membrane separation processes in hollow fiber contactors. J Chem Technol Biotechnol 84:1583–1614. doi:10.1002/jctb.2231

    Article  CAS  Google Scholar 

  • Chaturabul S, Wannachod T, Leepipatpiboon N, Pancharoen U, Kheawhom S (2015) Mass transfer resistance of simultaneous extraction and stripping of mercury(II) from petroleum produced water via HFSLM. J Ind Eng Chem 21:1020–1028. doi:10.1016/j.jiec.2014.05.011

    Article  CAS  Google Scholar 

  • Chayid MA, Ahmed MJ (2015) Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: isotherms, kinetics, and thermodynamics studies. J Environ Chem Eng 3:1592–1601. doi:10.1016/j.jece.2015.05.021

    Article  CAS  Google Scholar 

  • Chuo SC, Mohd-Setapar SH, Mohamad-Aziz SN, Starov VM (2014) A new method of extraction of amoxicillin using mixed reverse micelles. Colloids Surf A 460:137–144. doi:10.1016/j.colsurfa.2014.03.107

    Article  CAS  Google Scholar 

  • Derakhsheshpoor R, Homayoonfal M, Akbari A, Mehrnia M (2013) Amoxicillin separation from pharmaceutical wastewater by high permeability polysulfone nanofiltration membrane. J Environ Health Sci Eng 11:9–17. doi:10.1186/2052-336X-11-9

    Article  Google Scholar 

  • Dzygiel P, Wieczorek PP (2010) Liquid membranes: principles and applications in chemical separations and wastewater treatment, 1st edn. Elsevier, Netherlands

    Google Scholar 

  • Elmolla S, Chaudhuri M (2011) Combined photo-Fenton-SBR process for antibiotic wastewater treatment. J Hazard Mater 192:1418–1426. doi:10.1016/j.jhazmat.2011.06.057

    Article  CAS  Google Scholar 

  • Erah PO, Goddard AF, Barrett DA, Shaw PN, Spiller RC (1997) The stability of amoxycillin, clarithromycin and metronidazole in gastric juice: relevance to the treatment of Helicobacter pylori infection. J Antimicrob Chemother 39(1):5–12

    Article  CAS  Google Scholar 

  • Feng S, Shan N, Carpenter KJ (2006) Crystallization of amoxicillin trihydrate in the presence of degradation products. Org Process Res Dev 10(6):1212–1218. doi:10.1021/op060078l

    Article  CAS  Google Scholar 

  • Ghauch A, Tuqan A, Assi H (2009) Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 157:1626–1635. doi:10.1016/j.envpol.2008.12.024

    Article  CAS  Google Scholar 

  • Gmehling J, Kolbe B, Kleiber M, Rarey J (2012) Chapter 12: Enthalpy of reaction and chemical equilibria. Chemical thermodynamics for process simulation. Wiley-VCH Verlag and Co. KGaA, New York, pp 525–565

    Google Scholar 

  • Hamdo JY (2011) Titanium recovery from its aqueous media by 3-acetylpentane-2,4-dione as reagent. Damascus Univ J Basic Sci 27(1):35–48. doi:10.1088/0957-4484/25/41/415703

    Google Scholar 

  • Hao Z, Vilt ME, Wang Z, Zhang W, Winston Ho WS (2014) Supported liquid membranes with feed dispersion for recovery of cephalexin. J Membr Sci 468:423–431. doi:10.1016/j.memsci.2014.06.009

    Article  CAS  Google Scholar 

  • Holten-Lützhøft HC, Halling-Sørensen B, Jørgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36:1–6. doi:10.1007/s002449900435

    Article  Google Scholar 

  • Homsirikamol C, Sunsandee N, Pancharoen U, Nootong K (2016) Synergistic extraction of amoxicillin from aqueous solution by using binary mixtures of Aliquat 336, D2EHPA and TBP. Sep Purif Technol 162:30–36. doi:10.1016/j.seppur.2016.02.003

    Article  CAS  Google Scholar 

  • Huang D, Huang K, Chen S, Liu S, Yu J (2008) Rapid reaction-diffusion model for the enantioseparation of phenylalanine across hollow fibre supported liquid membrane. Sep Sci Technol 43:259–272. doi:10.1080/01496390701787057

    Article  CAS  Google Scholar 

  • Jin X, Zha S, Li S, Chen Z (2014) Simultaneous removal of mixed contaminants by organoclays—Amoxicillin and Cu(II) from aqueous solution. Appl Clay Sci 102:196–201. doi:10.1016/j.clay.2014.09.040

    Article  CAS  Google Scholar 

  • Kandwal P, Dixit S, Mukhopadhyay S, Mohapatra PK (2011) Mass transport modeling of Cs(I) through hollow fiber supported liquid membrane containing calix-[4]-bis(2,3-naptho)-crown-6 as the mobile carrier. Chem Eng J 174:110–116. doi:10.1016/j.cej.2011.08.057

    Article  CAS  Google Scholar 

  • Konari SN, Jacob JT (2014) stability indicating lc-analytical method development and validation for the simultaneous estimation of flucloxacillin and amoxicillin in pharmaceutical dosage form. J Taibah Univ Sci 9(2):167–176. doi:10.1016/j.jtusci.2014.07.005

    Article  Google Scholar 

  • Meng L, Li X, Wang K, Ma K, Zhang J (2015) Influence of the amoxicillin concentration on organics removal and microbial community structure in an anaerobic EGSB reactor treating with antibiotic wastewater. Chem Eng J 274:94–101. doi:10.1016/j.cej.2015.03.065

    Article  CAS  Google Scholar 

  • Mikkola JP, Virtanen P, Sjöholm R (2006) Aliquat 336—a versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids. Green Chem 8:250–255. doi:10.1039/B512819F

    Article  CAS  Google Scholar 

  • Padilla-Robles BG, Alonso A, Martínez-Delgadillo SA, González-Brambila M, Jaúregui-Haza UJ, Ramírez-Muñoz J (2015) Electrochemical degradation of amoxicillin in aqueous media. Chem Eng Process 94:93–98. doi:10.1016/j.cep.2014.12.007

    Article  CAS  Google Scholar 

  • Pan X, Deng C, Zhang D, Wang J, Mu G, Chen Y (2008) Toxic effects of amoxicillin on the photosystem II of Synechocystis sp. characterized by a variety of in vivo chlorophyll fluorescence tests. Aquat Toxicol 89:207–213. doi:10.1016/j.aquatox.2008.06.018

    Article  CAS  Google Scholar 

  • Pancharoen U, Wongsawa T, Lothongkum AW (2011) A reaction flux model for extraction of Cu(II) with LIX84I in HFSLM. Sep Sci Technol 46:2183–2190. doi:10.1080/01496395.2011.595287

    Article  CAS  Google Scholar 

  • Pirom T (2014) Separation of amoxicillin from pharmaceutical wastewaters via a hollow fiber supported liquid membrane (Doctoral thesis). Chulalongkorn University, Bangkok, Thailand

  • Pirom T, Wongsawa T, Sunsandee N, Ramakul P, Pancharoen U, Nootong K (2015a) The effect of temperature on mass transfer and thermodynamic parameters in the removal of amoxicillin via hollow fiber supported liquid membrane. Chem Eng J 265:75–83. doi:10.1016/j.cej.2014.12.037

    Article  CAS  Google Scholar 

  • Pirom T, Sunsandee N, Ramakul P, Pancharoen U, Nootong K, Leepipatpiboon N (2015b) Separation of amoxicillin using trioctylmethyl-ammonium chloride via a hollow fiber supported liquid membrane: modeling and experimental investigation. Ind Eng Chem 23:109–118. doi:10.1016/j.jiec.2014.08.001

    Article  CAS  Google Scholar 

  • Putra EK, Pranowo R, Sunarso J, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res 43(9):2419–2430. doi:10.1016/j.watres.2009.02.039

    Article  CAS  Google Scholar 

  • Rao N, Singh JR, Misra R, Nandy T (2009) Liquid–liquid extraction of phenol from simulated sebacic acid wastewater. J Sci Ind Res 68:823–828. URL:http://nopr.niscair.res.in/handle/123456789/5960

  • Saeed MT, Ahmad J, Shaheen M (2009) Commercial application of extracting reagents for metal recovery. J Pak Inst Chem Eng 13(59):1–4

    Google Scholar 

  • Sahoo GC, Dutta NN (1998) Studies on emulsion liquid membrane extraction of cephalexin. J Membr Sci 145:15–26. doi:10.1016/S0376-7388(98)00027-1

    Article  CAS  Google Scholar 

  • Shukla JP, Kumar A, Singh RK (1992) Effect of solvent type on neutral macrocycle-facilitated transport of uranyl ions across supported liquid membrane using dicyclohexano-18-crown-6 as carrier. Radiochim Acta 57:185–191

    Article  CAS  Google Scholar 

  • Soldenhoff K, Shamieh M, Manis A (2005) Liquid–liquid extraction of cobalt with hollow fiber contactor. J Membr Sci 252:183–194. doi:10.1016/j.memsci.2004.12.008

    Article  CAS  Google Scholar 

  • Uheida A, Zhang Y, Muhammed M (2004) Transport of palladium(II) through hollow fiber supported liquid membrane facilitated by nonylthiourea. J Membr Sci 241:289–295. doi:10.1016/j.memsci.2004.05.020

    Article  CAS  Google Scholar 

  • Vernekar PV, Jagdale YD, Patwardhan AW, Patwardhan AV, Ansari SA, Mohapatra PK, Manchanda VK (2013) Transport of cobalt(II) through a hollow fiber supported liquid membrane containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier. Chem Eng Res Des 91:141–157. doi:10.1016/j.cherd.2012.06.019

    Article  CAS  Google Scholar 

  • Wang K, Chang Z, Ma Y, Lei C, Jin S, Wu Y, Mahmood I, Hua C, Liu H (2009) Equilibrium study on reactive extraction of propionic acid with N1923 in different diluents. Fluid Phase Equilib 278:103–108. doi:10.1016/j.fluid.2009.01.014

    Article  CAS  Google Scholar 

  • Wongsawa T, Leepipatpiboon N, Thamphiphit N, Pancharoen U, Lothongkum AW (2013) Fluid-flow models operating on linear algebra for extraction and stripping of silver ions from pharmaceutical wastewater by HFSLMOriginal Research Article. Chem Eng J 222:361–373. doi:10.1016/j.cej.2013.02.091

    Article  CAS  Google Scholar 

  • Wongsawa T, Sunsandee N, Pancharoen U, Lothongkum AW (2014) High-efficiency HFSLM for silver-ion pertraction from pharmaceutical wastewater and mass-transport models. Chem Eng Res Des 92(11):2681–2693. doi:10.1016/j.cherd.2014.01.005

    Article  CAS  Google Scholar 

  • Zazouli MA, Ulbricht M, Nasseri S, Susanto H (2010) Effect of hydrophilic and hydrophobic organic matter on amoxicillin and cephalexin residuals rejection from water by nanofiltration. J Environ Health Sci Eng 7:15–24. URL:http://hdl.handle.net/1807/62280

  • Zaheri P, Mohamadi T, Abolghasemi H, Maraghe MG (2015) Supported liquid membrane incorporated with carbon nanotubes for the extraction of Europium using Cyanex272 as carrier. Chem Eng Res Des 100:81–88. doi:10.1016/j.cherd.2015.05.016

    Article  CAS  Google Scholar 

  • Zha SX, Zhou Y, Jin X, Chen Z (2013) The removal of amoxicillin from wastewater using organobentonite. J Environ Manage 129:569–576. doi:10.1016/j.jenvman.2013.08.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support given by Rachadapisek Sompote Fund for Postdoctoral Fellowship as well as the Integrated Innovation Academic Center Chulalongkorn University. Thanks are again extended to the Separation Laboratory, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University for chemical and apparatus support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ura Pancharoen or Soorathep Kheawhom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirom, T., Wongsawa, T., Wannachod, T. et al. Amoxicillin removal from aqueous solutions using hollow fibre supported liquid membrane: kinetic study. Chem. Pap. 71, 1291–1302 (2017). https://doi.org/10.1007/s11696-016-0121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0121-4

Keywords

Navigation