Skip to main content
Log in

Investigation of environmental and concentration effects on fluorescence properties of AlQ3 using mesoporous silica and polyacrylate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this work, for the first time, control over the position of maximum emission peak for fluorophore, using embedded tris(8-hydroxyquinoline) aluminum (AlQ3) complexes into different types of host materials, can be achieved. Moreover, the environmental and concentration effects on luminescent properties were studied. In this regard, different concentrations of AlQ3 were embedded into the poly(methyl methacrylate-co-butyl acrylate) (PMMA-co-PBuA) nanoparticles as organic host materials by emulsion polymerization. It is established that the dilution of AlQ3 in the polymer matrix leads to blue-shift of the luminescence maximum up to 0.32 eV compared to pure AlQ3. Moreover, AlQ3 was embedded in SBA-15 type mesoporous silica as an inorganic host material by physical adsorption. Finally, this functionalized mesoporous silica was incorporated into PMMA-co-PBuA transparent matrix by blending method to obtain Co-Poly-AlQ3-SBA-15 as organic–inorganic composite material. It was found that there is no significant wavelength shift on the maximum emission peak of the organic–inorganic composite at various concentrations of AlQ3-SBA-15. The prepared materials were characterized by powder X-ray diffraction (XRD), N2 adsorption–desorption, NMR, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and fluorescence spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antony R, Ratier B, Moliton A (1999) Realization of red light-emitting diodes with a confinement layer. Opt Mater 12:291–294. doi:10.1016/s0925-3467(99)00034-8

    Article  CAS  Google Scholar 

  • Auzel F, Baldacchini G, Baldacchini T, Chiacchiaretta P, Balaji Pode R (2006) Rayleigh scattering and luminescence blue shift in tris(8-hydroxyquinoline)aluminum films. J Lumin 119–120:111–115. doi:10.1016/j.jlumin.2005.12.018

    Article  Google Scholar 

  • Badiei A, Goldooz H (2012) A simple method for preparation of fluorescent nanostructure silica with hexagonal array. Int J Mod Phys Conf Ser 05:151–159. doi:10.1142/S2010194512001961

    Article  CAS  Google Scholar 

  • Badiei A, Goldooz H, Ziarani GM (2011) A novel method for preparation of 8-hydroxyquinoline functionalized mesoporous silica: aluminum complexes and photoluminescence studies. Appl Surf Sci 257:4912–4918. doi:10.1016/j.apsusc.2010.12.146

    Article  CAS  Google Scholar 

  • Balamurugan A, Kannan S, Selvaraj V, Rajeswari S (2004) Development and spectral characterization of poly(methyl methacrylate)/hydroxyapatite composite for biomedical applications. Trends Biomater Artif Organs 18:41–45

    Google Scholar 

  • Baldacchini G, Chiacchiaretta P, Reisfeld R, Zigansky E (2009) The origin of luminescence blueshifts in Alq3 composites. J Lumin 129:1849–1852. doi:10.1016/j.jlumin.2009.04.036

    Article  CAS  Google Scholar 

  • Bradley M, Ashokkumar M, Grieser F (2002) Sonochemical production of fluorescent and phosphorescent latex particles. J Am Chem Soc 125:525–529. doi:10.1021/ja0268581

    Article  Google Scholar 

  • Braun MGJ, Tzolov M, Coelle M, Meyer FD, Milius W, Hillebrecht H, Wendland O, von Schütz JU, Brütting W (2001) A new crystalline phase of the electroluminescent material tris(8-hydroxyquinoline) aluminum exhibiting blueshifted fluorescence. J Chem Phys 114:9625–9632. doi:10.1063/1.1369157

    Article  CAS  Google Scholar 

  • Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N, Sironi A (2000) Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(III). J Am Chem Soc 122:5147–5157. doi:10.1021/ja993608k

    Article  CAS  Google Scholar 

  • Cölle M, Brütting W (2004) Thermal, structural and photophysical properties of the organic semiconductor Alq3. Phys Status Sol (a) 201:1095–1115. doi:10.1002/pssa.200404341

  • Cölle M, Gmeiner J, Milius W, Hillebrecht H, Brütting W (2003) Preparation and characterization of blue-luminescent tris(8-hydroxyquinoline)aluminum (Alq3). Adv Func Mater 13:108–112. doi:10.1002/adfm.200390015

    Article  Google Scholar 

  • Curry RJ, Gillin WP, Clarkson J, Batchelder DN (2002) Morphological study of aluminum tris(8-hydroxyquinoline) thin films using infrared and Raman spectroscopy. J Appl Phys 92:1902. doi:10.1063/1.1495527

    Article  CAS  Google Scholar 

  • Deshmukh RR, Arolkar GA, Parab SS (2012) Studies in dielectric properties of various polymers and its correlation with surface free energy. Int J Chem Phys Sci 1:40–47

    Google Scholar 

  • Du Y, Fu Y, Guo X, Li H, Lü C, Su Z (2010) Fabrication of fluorescent mesoporous silica nanoparticles with confined 8-hydroxyquinoline functionalized ZnS nanoparticles and their transparent polymer nanocomposites. Microporous Mesoporous Mater 130:122–129. doi:10.1016/j.micromeso.2009.10.022

    Article  CAS  Google Scholar 

  • Ganjali MR, Gupta VK, Hosseini M, Rafiei-Sarmazdeh Z, Faridbod F, Goldooz H, Badiei AR, Norouzi P (2012) A novel permanganate-sensitive fluorescent nano-chemosensor assembled with a new 8-hydroxyquinoline-functionalized SBA-15. Talanta 88:684–688. doi:10.1016/j.talanta.2011.11.065

    Article  CAS  Google Scholar 

  • Hashemi P, Shamizadeh M, Badiei A, Poor PZ, Ghiasvand AR, Yarahmadi A (2009) Amino ethyl-functionalized nanoporous silica as a novel fiber coating for solid-phase microextraction. Anal Chim Acta 646:1–5. doi:10.1016/j.aca.2009.04.023

    Article  CAS  Google Scholar 

  • Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251. doi:10.1002/anie.200503075

    Article  CAS  Google Scholar 

  • Karimi M, Badiei A, Mohammadi Ziarani G (2015a) A single hybrid optical sensor based on nanoporous silica type SBA-15 for detection of Pb2+ and I in aqueous media. RSC Adv 5:36530–36539. doi:10.1039/c5ra02692j

    Article  CAS  Google Scholar 

  • Karimi M, Badiei A, Lashgari N, Afshani J, Mohammadi Ziarani G (2015b) A nanostructured LUS-1 based organic–inorganic hybrid optical sensor for highly selective sensing of Fe3+ in water. J Lumin 168:1–6. doi:10.1016/j.jlumin.2015.07.007

    Article  CAS  Google Scholar 

  • Kruk M, Dufour B, Celer EB, Kowalewski T, Jaroniec M, Matyjaszewski K (2008) Grafting monodisperse polymer chains from concave surfaces of ordered mesoporous silicas. Macromolecules 41:8584–8591. doi:10.1021/ma801643r

    Article  CAS  Google Scholar 

  • Kushto GP, Iizumi Y, Kido J, Kafafi ZH (2000) A matrix-isolation spectroscopic and theoretical investigation of tris(8-hydroxyquinolinato)aluminum(iii) and tris(4-methyl-8-hydroxyquinolinato)aluminum(iii). J Phys Chem A 104:3670–3680. doi:10.1021/jp993883t

    Article  CAS  Google Scholar 

  • Lee Y, Kim J, Kwon S, Min C-K, Yi Y, Kim JW, Koo B, Hong M (2008) Interface studies of Aluminum, 8-hydroxyquinolatolithium (Liq) and Alq3 for inverted OLED application. Org Electron 9:407–412. doi:10.1016/j.orgel.2008.01.001

    Article  CAS  Google Scholar 

  • Levichkova MM, Assa JJ, Fröb H, Leo K (2006) Blue luminescent isolated Alq3 molecules in a solid-state matrix. Appl Phys Lett 88:201912. doi:10.1063/1.2203966

    Article  Google Scholar 

  • Li Y-J, Yan B (2009) Lanthanide (Eu3+, Tb3+)/β-diketone modified mesoporous SBA-15/organic polymer hybrids: chemically bonded construction, physical characterization, and photophysical properties. Inorg Chem 48:8276–8285. doi:10.1021/ic900971h

    Article  CAS  Google Scholar 

  • Li N, Li X, Wang W, Geng W, Qiu S (2006) Blue-shifting photoluminescence of Tris(8-hydroxyquinoline) aluminium encapsulated in the channel of functionalized mesoporous silica SBA-15. Mater Chem Phys 100:128–131. doi:10.1016/j.matchemphys.2005.12.020

    Article  CAS  Google Scholar 

  • Magee RJ, Gordon L (1963) The infrared spectra of chelate compounds—I: a study of some metal chelate compounds of 8-hydroxyquinoline in the region 625–5000 cm−1. Talanta 10:851–859. doi:10.1016/0039-9140(63)80245-3

    Article  CAS  Google Scholar 

  • Mahakhode JG, Dhoble SJ, Joshi CP, Moharil SV (2011) Blue-shifted photoluminescence of Alq3 dispersed in PMMA. Bull Mater Sci 34:1649–1651

    Article  CAS  Google Scholar 

  • Meyers A, Weck M (2003) Design and synthesis of Alq3-functionalized polymers. Macromolecules 36:1766–1768. doi:10.1007/s12034-011-0372-1

    Article  CAS  Google Scholar 

  • Nakamoto K, Ohkaku N (1971) Metal isotope effect on metal-ligand vibrations. VI. Metal complexes of 8-hydroxyquinoline. Inorg Chem 10:798–805. doi:10.1021/ic50098a027

    Article  CAS  Google Scholar 

  • Park JH, Kim S, Kim YC, Park OO (2005) Polymer/nanoporous silica nanocomposite blue-light-emitting diodes. Nanotechnology 16:1793–1797

    Article  CAS  Google Scholar 

  • Poostforooshan J, Rennecke S, Gensch M, Beuermann S, Brunotte G-P, Ziegmann G, Weber AP (2014) Aerosol process for the in situ coating of nanoparticles with a polymer shell. Aerosol Sci Technol 48:1111–1122. doi:10.1080/02786826.2014.964354

    Article  CAS  Google Scholar 

  • Poostforooshan J, Badiei A, Kolahdouz M, Weber AP (2016) Synthesis of spherical carbon nitride-based polymer composites by continuous aerosol–photopolymerization with efficient light harvesting. ACS Appl Mater Interfaces 8:21731–21741. doi:10.1021/acsami.6b07909

    Article  CAS  Google Scholar 

  • Scott BJ, Wirnsberger G, Stucky GD (2001) Mesoporous and mesostructured materials for optical applications. Chem Mater 13:3140–3150. doi:10.1021/cm0110730

    Article  CAS  Google Scholar 

  • Shaban M, Ramazani SAA, Ahadian MM, Tamsilian Y, Weber AP (2016) Facile synthesis of cauliflower-like hydrophobically modified polyacrylamide nanospheres by aerosol-photopolymerization. Eur Polymer J 83:323–336. doi:10.1016/j.eurpolymj.2016.08.022

    Article  CAS  Google Scholar 

  • Shahbazi A, Younesi H, Badiei A (2011) Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(II), Cu(II) and Cd(II) heavy metal ions in batch and fixed bed column. Chem Eng J 168:505–518. doi:10.1016/j.cej.2010.11.053

    Article  CAS  Google Scholar 

  • Tagaya M, Ogawa M (2008) Possible pore size effects on the state of tris(8-quinolinato)aluminum(iii) (Alq3) adsorbed in mesoporous silicas and their temperature dependence. Phys Chem Chem Phys 10:6849–6855. doi:10.1039/B807593J

    Article  CAS  Google Scholar 

  • Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915. doi:10.1063/1.98799

    Article  CAS  Google Scholar 

  • Wang H, Huang J, Wu S, Xu C, Xing L, Xu L, Kan Q (2006a) Design and synthesis of Alq3-functionalized SBA-15 mesoporous material. Mater Lett 60:2662–2665. doi:10.1016/j.matlet.2006.01.059

    Article  CAS  Google Scholar 

  • Wang H, Huang J, Wu S, Xu C, Xing L, Xu L, Kan Q (2006b) Design and synthesis of Alq3-functionalized SBA-15 mesoporous material. Mater Lett 60:2662–2665. doi:10.1016/j.matlet.2006.01.059

    Article  CAS  Google Scholar 

  • Wang X, Xu S, Xu W (2011a) Luminescent properties of dye-PMMA composite nanospheres. Phys Chem Chem Phys 13:1560–1567. doi:10.1039/c0cp00929f

    Article  CAS  Google Scholar 

  • Wang X, Xu S, Liang C, Li H, Sun F, Xu W (2011b) Enriching PMMA nanospheres with adjustable charges as novel templates for multicolored dye@PMMA nanocomposites. Nanotechnology 22:275608

    Article  Google Scholar 

  • Wei L, Hu N, Zhang Y (2010) Synthesis of polymer-mesoporous silica nanocomposites. Materials 3:4066–4079

    Article  CAS  Google Scholar 

  • Zhang F-A, Lee D-K, Pinnavaia TJ (2010) PMMA/mesoporous silica nanocomposites: effect of framework structure and pore size on thermomechanical properties. Polymer Chemistry 1:107–113. doi:10.1039/b9py00232d

    Article  CAS  Google Scholar 

  • Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036. doi:10.1021/ja974025i

    Article  CAS  Google Scholar 

  • Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957. doi:10.1021/cr068035q

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Tehran for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Badiei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poostforooshan, J., Badiei, A., Farzi, G. et al. Investigation of environmental and concentration effects on fluorescence properties of AlQ3 using mesoporous silica and polyacrylate. Chem. Pap. 71, 1887–1894 (2017). https://doi.org/10.1007/s11696-017-0183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0183-y

Keywords

Navigation