Skip to main content
Log in

Global trends in paediatric robot-assisted urological surgery: a bibliometric and Progressive Scholarly Acceptance analysis

  • Original Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

The inaugural robot-assisted urological procedure in a child was performed in 2002. This study aims to catalogue the impact of this technology by utilizing bibliographic data as a surrogate measure for global diffusion activity and to appraise the quality of evidence in this field. A systematic literature search was performed to retrieve all reported cases of paediatric robot-assisted urological surgery published between 2003 and 2016. The status of scientific community acceptance was determined using a newly developed analysis model named progressive scholarly acceptance. A total of 151 publications were identified that reported 3688 procedures in 3372 patients. The most reported procedures were pyeloplasty (n = 1923) and ureteral reimplantation (n = 1120). There were 16 countries and 48 institutions represented in the literature. On average, the total case volume reported in the literature more than doubled each year (mean value increase 236.6% per annum). The level of evidence for original studies remains limited to case reports, case series and retrospective comparative studies. Progressive Scholarly Acceptance charts indicate that robot-assisted techniques for pyeloplasty or ureteral reimplantation are yet to be accepted by the scientific community. Global adoption trends for robotic surgery in paediatric urology have been progressive but remain low volume. Pyeloplasty and ureteral reimplantation are dominant applications. Robot-assisted techniques for these procedures are not supported by high quality evidence at present. Next-generation robots are forecast to be smaller, cheaper, more advanced and customized for paediatric patients. Ongoing critical evaluation must occur simultaneously with expected technology evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cundy TP, Shetty K, Clark J, Chang TP, Sriskandarajah K, Gattas NE et al (2013) The first decade of robotic surgery in children. J Pediatr Surg 48:858–865

    Article  PubMed  Google Scholar 

  2. Cundy TP, Marcus HJ, Hughes-Hallett A, Najmaldin AS, Yang GZ, Darzi A (2014) International attitudes of early adopters to current and future robotic technologies in paediatric surgery. J Pediatr Surg 849:1522–1526

    Article  Google Scholar 

  3. Cundy TP, Harling L, Hughes-Hallett A, Mayer EK, Najmaldin AS, Athanasiou T et al (2014) Meta-analysis of robot-assisted vs conventional laparoscopic and open pyeloplasty in children. BJU Int 114:582–585

    Article  PubMed  Google Scholar 

  4. Weiss DA, Shukla AR (2015) The robotic-assisted ureteral reimplantation: the evolution to a new standard. Urol Clin N Am 42:99–109

    Article  Google Scholar 

  5. Cundy TP, Marcus HJ, Hughes-Hallett A, Khurana S, Darzi A (2015) Robotic surgery in children: adopt now, await, or dismiss? Pediatr Surg Int 31:1119–1125

    Article  PubMed  Google Scholar 

  6. Lee RS, Retik AB, Borer JG, Peters CA (2006) Paediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol 175:683–687

    Article  PubMed  Google Scholar 

  7. Peters CA (2004) Robotically assisted surgery in paediatric urology. Urol Clin N Am 31:743–752

    Article  Google Scholar 

  8. Mahida JB, Cooper JN, Herz D, Diefenbach KA, Deans KJ, Minneci PC et al (2015) Utilization and costs associated with robotic surgery in children. J Surg Res 199:169–176

    Article  PubMed  Google Scholar 

  9. Liu DB, Ellimoottil C, Flum AS, Casey JT, Gong EM (2014) Contemporary national comparison of open, laparoscopic, and robotic-assisted laparoscopic paediatric pyeloplasty. J Pediatr Urol 10:610–615

    Article  PubMed  Google Scholar 

  10. Varda BK, Johnson EK, Clark C, Chung BI, Nelson CP, Chang SL (2014) National trends of perioperative outcomes and costs for open, laparoscopic and robotic paediatric pyeloplasty. J Urol 191:1090–1095

    Article  PubMed  Google Scholar 

  11. Schnurman Z, Kondziolka D (2016) Evaluating innovation. Part 2: Development in neurosurgery. J Neurosurg 124:212–223

    Article  PubMed  Google Scholar 

  12. Schnurman Z, Kondziolka D (2016) Evaluating innovation. Part 1: The concept of progressive scholarly acceptance. J Neurosurg 124:207–211

    Article  PubMed  Google Scholar 

  13. Riskin DJ, Longaker MT, Gertner M, Krummel TM (2006) Innovation in surgery: a historical perspective. Ann Surg 244:686–693

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cundy TP, Gattas NE, White AD, Najmaldin AS (2015) Learning curve evaluation using cumulative summation analysis—a clinical example of paediatric robot-assisted laparoscopic pyeloplasty. J Pediatr Surg 50:1368–1373

    Article  PubMed  Google Scholar 

  15. Camps JI (2011) The use of robotics in paediatric surgery: my initial experience. Pediatr Surg Int 27:991–996

    Article  PubMed  Google Scholar 

  16. Rogers EM (2003) Diffusion of innovations, 5th edn. The Free Press, New York

    Google Scholar 

  17. Arlen AM, Broderick KM, Travers C, Smith EA, Elmore JM, Kirsch AJ (2016) Outcomes of complex robot-assisted extravesical ureteral reimplantation in the paediatric population. J Pediatr Urol 12:169.e1–169.e6

    Article  Google Scholar 

  18. Kapoor V, Elder JS (2015) Simultaneous bilateral robotic-assisted laparoscopic procedures in children. J Robot Surg 9:285–290

    Article  PubMed  Google Scholar 

  19. Avery DI, Herbst KW, Lendvay TS, Noh PH, Dangle P, Gundeti MS et al (2015) Robot-assisted laparoscopic pyeloplasty: multi-institutional experience in infants. J Pediatr Surg 11:139.e1–139.e5

    Google Scholar 

  20. Ballouhey Q, Villemagne T, Cros J, Szwarc C, Braik K, Longis B et al (2015) A comparison of robotic surgery in children weighing above and below 15.0 kg: size does not affect surgery success. Surg Endosc 29:2643–2650

    Article  PubMed  Google Scholar 

  21. Pelizzo G, Nakib G, Goruppi I, Avolio L, Romano P, Raffaele A et al (2014) Paediatric robotic pyeloplasty in patients weighing less than 10 kg initial experience. Surg Laparosc Percutan Tech 24:e29–e31

    Article  Google Scholar 

  22. Bansal D, Cost NG, DeFoor WR Jr, Reddy PP, Minevich EA, Vanderbrink BA et al (2014) Infant robotic pyeloplasty: comparison with an open cohort. J Pediatr Urol 10:380–385

    Article  CAS  PubMed  Google Scholar 

  23. Trevisani LF, Nguyen HT (2013) Current controversies in paediatric urologic robotic surgery. Curr Opin Urol 23:72–77

    Article  PubMed  Google Scholar 

  24. Schober MS, Jayanthi VR (2015) Vesicoscopic ureteral reimplant: is there a role in the age of robotics? Urol Clin N Am 42:53–59

    Article  Google Scholar 

  25. Bowen DK, Faasse MA, Liu DB, Gong EM, Lindgren BW, Johnson EK (2016) Use of paediatric open, laparoscopic and robot-assisted laparoscopic ureteral reimplantation in the United States: 2000 to 2012. J Urol 196:207–212

    Article  PubMed  Google Scholar 

  26. Hofer MD, Meeks JJ, Cashy J, Kundu S, Zhao LC (2013) Impact of increasing prevalence of minimally invasive prostatectomy on open prostatectomy observed in the national inpatient sample and national surgical quality improvement program. J Endourol 27:102–107

    Article  PubMed  Google Scholar 

  27. Yaxley JW, Coughlin GD, Chambers SK, Occhipinti S, Samaratunga H, Zajdlewicz L et al (2016) Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet 388(10049):1057–1066

    Article  PubMed  Google Scholar 

  28. Grimsby GM, Dwyer ME, Jacobs MA, Ost MC, Schneck FX, Cannon GM et al (2015) Multi-institutional review of outcomes of robot-assisted laparoscopic extravesical ureteral reimplantation. J Urol 193:1791–1795

    Article  PubMed  Google Scholar 

  29. Kurtz MP, Leow JJ, Varda BK, Logvinenko T, Yu RN, Nelson CP et al (2016) Robotic versus open paediatric ureteral reimplantation: costs and complications from a nationwide sample. J Pediatr Urol 12:408.e1

    Article  Google Scholar 

  30. Friedmacher F, Till H (2015) Robotic-assisted procedures in paediatric surgery: a critical appraisal of the current best evidence in comparison to conventional minimally invasive surgery. J Laparoendosc Adv Surg Tech A 25:936–943

    Article  PubMed  Google Scholar 

  31. Mayer E, Darzi A (2016) Innovation and surgical clinical trials. Lancet 388:1027–1028

    Article  PubMed  Google Scholar 

  32. Behan JW, Kim SS, Dorey F, De Filippo RE, Chang AY, Hardy BE et al (2011) Human capital gains associated with robotic assisted laparoscopic pyeloplasty in children compared to open pyeloplasty. J Urol 186:1663–1667

    Article  PubMed  Google Scholar 

  33. Tedesco G, Faggiano FC, Leo E, Derrico P, Ritrovato M (2016) A comparative cost analysis of robotic-assisted surgery versus laparoscopic surgery and open surgery: the necessity of investing knowledgeably. Surg Endosc 30:5044–5051

    Article  PubMed  Google Scholar 

  34. Vitiello V, Lee SL, Cundy TP, Yang GZ (2013) Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 6:111–126

    Article  PubMed  Google Scholar 

  35. Marchini GS, Hong YK, Minnillo BJ, Diamond DA, Houck CS, Meier PM et al (2011) Robotic assisted laparoscopic ureteral reimplantation in children: case matched comparative study with open surgical approach. J Urol 185:1870–1875

    Article  PubMed  Google Scholar 

  36. Cundy TP, Marcus HJ, Hughes-Hallett A, MacKinnon T, Najmaldin AS, Yang GZ et al (2015) Robotic versus non-robotic instruments in spatially constrained operative workspaces—a pre-clinical randomised crossover study. BJU Int 116:415–422

    Article  PubMed  Google Scholar 

  37. Hughes-Hallett A, Mayer EK, Marcus HJ, Cundy TP, Pratt PJ, Parston G et al (2014) Quantifying innovation in surgery. Ann Surg 260:205–211

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Cundy.

Ethics declarations

Conflict of interest

Thomas P Cundy, Simon JD Harley, Hani J Marcus, Archie Hughes-Hallett, Sanjeev Khurana declare that they have no conflict of interest.

Funding

None.

Ethical approval

Not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cundy, T.P., Harley, S.J.D., Marcus, H.J. et al. Global trends in paediatric robot-assisted urological surgery: a bibliometric and Progressive Scholarly Acceptance analysis. J Robotic Surg 12, 109–115 (2018). https://doi.org/10.1007/s11701-017-0703-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-017-0703-3

Keywords

Navigation