Skip to main content
Log in

Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

High energy density fuels are critical for hypersonic aerospace propulsion but suffer from difficulties of ignition delay and incomplete combustion. This research reports aluminum nanoparticles (Al NPs) assisted ignition and combustion of high energy density JP-10 fuel. Al NPs with a size of 16 nm were fabricated through a mild and simple method by decomposing AlH3·Et2O with the addition of a surfactant ligand. The uniform size distribution, nanoscaled size and surface ligand make Al NPs stably suspend in JP-10, with 80% NPs being dispersed in the liquid fuel after six months. A shock tube test shows that the presence of 1 wt-% Al NPs can significantly shorten ignition delay time at temperature of 1500 to 1750 K, promote the combustion, and enhance energy release of JP-10. This work demonstrates the potential of Al NPs as ignition and combustion additive for high energy density fuel in hypersonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung H S, Chen C S H, Kremer R A, Boulton J R, Burdette G W. Recent developments in high-energy density liquid hydrocarbon fuels. Energy & Fuels, 1999, 13(3): 641–649

    Article  CAS  Google Scholar 

  2. Keshavarz M H, Monjezi K H, Esmailpour K, Zamani M. Performance assessment of some isomers of saturated polycyclic hydrocarbons for use as jet fuel. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 309–314

    Article  CAS  Google Scholar 

  3. Sibi M G, Singh B, Kumar R, Pendem C, Sinha A K. Single-step catalytic liquid-phase hydroconversion of DCPD into high energy density fuel exo-THDCPD. Green Chemistry, 2012, 14(4): 976–983

    Article  CAS  Google Scholar 

  4. Wang L, Zou J-J, Zhang X, Wang L. Isomerization of tetrahydrodicyclopentadiene using ionic liquid: Green alternative for jet propellant-10 and adamantine. Fuel, 2012, 91(1): 164–169

    Article  CAS  Google Scholar 

  5. Huang M Y, Wu J C, Shieu F S, Lin J J. Isomerization of endotetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts. Journal of Molecular Catalysis A Chemical, 2010, 315(1): 69–75

    Article  CAS  Google Scholar 

  6. Zou J-J, Xiong Z, Zhang X, Liu G, Wang L, Mi Z. Kinetics of tricyclopentadiene hydrogenation over Pd-B/γ-Al2O3 amorphous catalyst. Industrial & Engineering Chemistry Research, 2007, 46 (13): 4415–4420

    Article  CAS  Google Scholar 

  7. Wang L, Zou J-J, Zhang X, Wang L. Rearrangement of tetrahydrotricyclopentadiene using acidic ionic liquid: Synthesis of diamondoid fuel. Energy & Fuels, 2011, 25(4): 1342–1347

    Article  CAS  Google Scholar 

  8. Zou J-J, Zhang X, Kong J, Wang L. Hydrogenation of dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4. Fuel, 2008, 87(17): 3655–3659

    Article  CAS  Google Scholar 

  9. Zou J-J, Xiong Z, Wang L, Zhang X, Mi Z. Preparation of Pd-B/γ-Al2O3 amorphous catalyst for the hydrogenation of tricyclopentadiene. Journal of Molecular Catalysis A Chemical, 2007, 271(1-2): 209–215

    Article  CAS  Google Scholar 

  10. E X-T-F, Zhang Y, Zou J-J, Wang L, Zhang X. Oleylamineprotected metal (Pt, Pd) nanoparticles for pseudohomogeneous catalytic cracking of JP-10 jet fuel. Industrial & Engineering Chemistry Research, 2014, 53(31): 12312–12318

    Article  CAS  Google Scholar 

  11. E X-T-F, Zhang Y, Zou J-J, Zhang X, Wang L. Shape evolution in Brust-Schiffrin synthesis of Au nanoparticles. Materials Letters, 2014, 118(3): 196–199

    Article  CAS  Google Scholar 

  12. Van Devener B, Anderson S L. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy & Fuels, 2006, 20(5): 1886–1894

    Article  CAS  Google Scholar 

  13. Shimizu T, Abid A D, Poskrebyshev G, Wang H, Nabity J, Engel J, Yu J, Wickham D, Van Devener B, Anderson S L, Williams S. Methane ignition catalyzed by in situ generated palladium nanoparticles. Combustion and Flame, 2010, 157(3): 421–435

    Article  CAS  Google Scholar 

  14. Van Devener B, Anderson S L, Shimizu T,Wang H, Nabity J, Engel J, Yu J, Wickham D, Williams S. In situ generation of Pd/PdO nanoparticle methane combustion catalyst: Correlation of particle surface chemistry with ignition. Journal of Physical Chemistry C, 2015, 80033(80138): 20632–20639

    Google Scholar 

  15. Guo Y, Yang Y, Fang W, Hu S. Resorcinarene-encapsulated Ni-B nano-amorphous alloys for quasi-homogeneous catalytic cracking of JP-10. Applied Catalysis A, General, 2014, 469(3): 213–220

    Article  CAS  Google Scholar 

  16. E X-T-F, Pan L, Wang F, Wang L, Zhang X, Zou J-J. Alnanoparticle-containing nanofluid fuel: Synthesis, stability, properties, and propulsion performance. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738–2745

    Article  CAS  Google Scholar 

  17. Allen C, Mittal G, Sung C J, Toulson E, Lee T. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proceedings of the Combustion Institute, 2011, 33(2): 3367–3374

    Article  CAS  Google Scholar 

  18. Starik A M, Kuleshov P S, Sharipov A S, Titova N S. Kinetics of ignition and combustion in the Al-CH4-O2 System. Energy & Fuels, 2014, 28(10): 6579–6588

    Article  CAS  Google Scholar 

  19. Smirnov V V, Kostritsa S A, Kobtsev V D, Titova N S, Starik A M. Experimental study of combustion of composite fuel comprising n-decane and aluminum nanoparticles. Combustion and Flame, 2015, 162(10): 3554–3561

    Article  CAS  Google Scholar 

  20. Haber J A, Buhro W E. Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; facile room-temperature grain growth. Journal of the American Chemical Society, 1998, 120 (42): 10847–10855

    Article  CAS  Google Scholar 

  21. Jouet R J, Warren A D, Rosenberg D M, Bellitto V J, Park K, Zachariah M R. Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids. Chemistry of Materials, 2005, 800(17): 2987–2996

    Article  CAS  Google Scholar 

  22. Jouet R J, Carney J R, Granholm R H, Sandusky H W, Warren A D. Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites. Materials Science and Technology, 2006, 22(4): 422–429

    Article  CAS  Google Scholar 

  23. Foley T J, Johnson C E, Higa K T. Inhibition of oxide formation on aluminum nanoparticles by transition metal coating. Chemistry of Materials, 2005, 17(16): 4086–4091

    Article  CAS  Google Scholar 

  24. Fernando K A S, SmithMJ, Harruff B A, LewisWK, Guliants E A, Bunker C E. Sonochemically assisted thermal decomposition of alane N,N-dimethylethylamine with titanium (IV) isopropoxide in the presence of oleic acid to yield air-stable and size-selective aluminum core-shell nanoparticles. Journal of Physical Chemistry C, 2009, 113(2): 500–503

    Article  CAS  Google Scholar 

  25. Xu S, Liao Q. Shock tube study on auto-ignition delay of kerosene aerosol and its cracked mixture. Procedia Engineering, 2015, 99(1): 338–343

    Article  CAS  Google Scholar 

  26. Goulet P J G, Lennox R B. New insights into Brust-Schiffrin metal nanoparticle synthesis. Journal of the American Chemical Society, 2010, 132(28): 9582–9584

    Article  CAS  PubMed  Google Scholar 

  27. Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie International Edition, 2009, 48(1): 60–103

    Article  CAS  PubMed  Google Scholar 

  28. Lewis W K, Rosenberger A T, Gord J R, Crouse C A, Harruff B A, Shiral Fernando K A, Smith M J, Phelps D K, Spowart J E, Guliants E A, et al. Multispectroscopic (FTIR, XPS, and TOFMS-TPD) investigation of the core-shell bonding in sonochemically prepared aluminum nanoparticles capped with oleic acid. Journal of Physical Chemistry C, 2010, 114(14): 6377–6380

    Article  CAS  Google Scholar 

  29. Bournel F, Laffon C, Parent P, Tourillon G. Adsorption of acrylic acid on aluminium at 300 K: A multi-spectroscopic study. Surface Science, 1996, 352-354(95): 228–231

    Article  CAS  Google Scholar 

  30. Lee H M, Kim Y J. Preparation of size-controlled fine Al particles for application to rear electrode of Si solar cells. Solar Energy Materials and Solar Cells, 2011, 95(12): 3352–3358

    Article  CAS  Google Scholar 

  31. Hammerstroem D W, Burgers M A, Chung S W, Guliants E A, Bunker C E, Wentz K M, Hayes S E, Buckner S W, Jelliss P A. Aluminum nanoparticles capped by polymerization of alkylsubstituted epoxides: Ratio-dependent stability and particle size. Inorganic Chemistry, 2011, 50(11): 5054–5059

    Article  CAS  PubMed  Google Scholar 

  32. Gan Y, Qiao L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combustion and Flame, 2011, 158(2): 354–368

    Article  CAS  Google Scholar 

  33. Zhao Y, Yi H, Jia F, Li H, Peng C, Song S. A novel method for determining the thickness of hydration shells on nanosheets: A case of montmorillonite in water. Powder Technology, 2017, 306(7): 74–79

    Article  CAS  Google Scholar 

  34. Davidson D F, Horning D C, Herbon J T, Hanson R K. Shock tube measurements of JP-10 ignition. Proceedings of the Combustion Institute, 2000, 28(2): 1687–1692

    Article  CAS  Google Scholar 

  35. Li Y, Kalia R K, Nakano A, Vashishta P. Size effect on the oxidation of aluminum nanoparticle: Multimillion-atom reactive molecular dynamics simulations. Journal of Applied Physics, 2013, 114(13): 134312–134322

    Article  CAS  Google Scholar 

  36. Levitas V I. Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism. Combustion and Flame, 2009, 156(2): 543–546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the supports from the National Natural Science Foundation of China (Grant Nos. U1462119 and 21476168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Jun Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

E, XTF., Zhang, L., Wang, F. et al. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels. Front. Chem. Sci. Eng. 12, 358–366 (2018). https://doi.org/10.1007/s11705-018-1702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1702-2

Keywords

Navigation