Skip to main content
Log in

Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A survey addressing the uses of bismuth oxide in photocatalysis is presented. The richness of literature on such a specific topic proves the growing importance of this compound as a valid tool in pollution abatement and environmental decontamination. Many research groups have focused their activity on how to improve the photocatalytic properties of this semiconductor and several solutions have been adopted in the synthesis method, often based on wet-chemical processes. The impressive development of nanoscience helped in understanding and identifying process variables and operative conditions aiming at optimizing the yield of this promising photocatalytic material in the utilization of solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagatin R, Klemeš J J, Reverberi A P, Huisingh D. Conservation and improvements in water resource management: A global challenge. Journal of Cleaner Production, 2014, 77: 1–9

    Article  Google Scholar 

  2. Van-Dal É S, Bouallou C. Design and simulation of a methanol production plant from CO2 hydrogenation. Journal of Cleaner Production, 2013, 57: 38–45

    Article  CAS  Google Scholar 

  3. Yu L, Ruan S, Xu X, Zou R, Hu J. One-dimensional nanomaterialassembled macroscopic membranes for water treatment. Nano Today, 2017, 17: 79–95

    Article  CAS  Google Scholar 

  4. Pascariu V, Avadanei O, Gasner P, Stoica I, Reverberi A P, Mitoseriu L. Preparation and characterization of PbTiO 3-epoxy resin compositionally graded thick films. Phase Transitions, 2013, 86(7): 715–725

    Article  CAS  Google Scholar 

  5. Wang J, Gu H. Novel metal nanomaterials and their catalytic applications. Molecules, 2015, 20(9): 17070–17092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mehring M. From molecules to bismuth oxide-based materials: Potential homo-and heterometallic precursors and model compounds. Coordination Chemistry Reviews, 2007, 251(7–8): 974–1006

    Article  CAS  Google Scholar 

  7. Koziorowski J, Stanciu A E, Gómez-Vallejo V, Llop J. Radiolabeled nanoparticles for cancer diagnosis and therapy. Anti-cancer Agents in Medicinal Chemistry, 2017, 17(3): 333–354

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X D, Chen J, Min Y, Park G B, Shen X, Song S S, Sun Y M, Wang H, Long W, Xie J, Gao K, Zhang L, Fan S, Fan F, Jeong U. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Advanced Functional Materials, 2014, 24(12): 1718–1729

    Article  CAS  Google Scholar 

  9. Debbage P, Jaschke W. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 2008, 130(5): 845–875

    Article  CAS  PubMed  Google Scholar 

  10. Hernández-Rivera M, Kumar I, Cho S Y, Cheong B Y, Pulikkathara M X, Moghaddam S E, Whitmire K H, Wilson L J. High-performance hybrid Bismuth-carbon nanotube based contrast agent for X-ray CT imaging. ACS Applied Materials & Interfaces, 2017, 9(7): 5709–5716

    Article  CAS  Google Scholar 

  11. Fabiano B, Pistritto F, Reverberi A, Palazzi E. Ethylene-air mixtures under flowing conditions: A model-based approach to explosion conditions. Clean Technologies and Environmental Policy, 2015, 17(5): 1261–1270

    Article  CAS  Google Scholar 

  12. Solisio C, Reverberi A P, Del Borghi A, Dovi’ V G. Inverse estimation of temperature profiles in landfills using heat recovery fluids measurements. Journal of Applied Mathematics, 2012, 2012: 747410

    Article  Google Scholar 

  13. Palazzi E, Perego P, Fabiano B. Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor. Chemical Engineering Science, 2002, 57(18): 3819–3830

    Article  CAS  Google Scholar 

  14. Palazzi E, Caviglione C, Reverberi A P, Fabiano B. A short-cut analytical model of hydrocarbon pool fire of different geometries, with enhanced view factor evaluation. Process Safety and Environmental Protection, 2017, 110: 89–101

    Article  CAS  Google Scholar 

  15. Abu-Dief A M, Mohamed W S. α-Bi2O3 nanorods: Synthesis, characterization and UV-photocatalytic activity. Materials Research Express, 2017, 4(3): 035039

    Article  CAS  Google Scholar 

  16. Ding S, Niu J, Bao Y, Hu L. Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visiblelight-driven Bi2O3/Bi2O2CO3/Sr6Bi2O9 photocatalyst. Journal of Hazardous Materials, 2013, 262: 812–818

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Deng H, Yao W, Jiang Q, Shen J. Preparation and photocatalytic activity of Y-doped Bi2O3. Journal of Alloys and Compounds, 2015, 651: 135–142

    Article  CAS  Google Scholar 

  18. Sudrajat H. Cu(II)/Bi2O3 photocatalysis for toxicity reduction of atrazine in water environment under different light wavelengths. Environmental Processes, 2017, 4(2): 439–449

    Article  CAS  Google Scholar 

  19. Linsebiegler A L, Lu G, Yates J T Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results. Chemical Reviews, 1995, 95(3): 735–758

    Article  Google Scholar 

  20. Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth doped TiO2 nanoparticles. Journal of Catalysis, 2002, 207(2): 151–157

    Article  CAS  Google Scholar 

  21. Drache M, Roussel P, Wignacourt J P. Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3. Chemical Reviews, 2007, 107(1): 80–96

    Article  CAS  PubMed  Google Scholar 

  22. Xie J, Li L, Tian C, Han C, Zhao D. Template-free synthesis of hierarchical constructed flower-like d-Bi2O3 microspheres with photocatalytic performance. Micro & Nano Letters, 2012, 7(7): 651–653

    Article  CAS  Google Scholar 

  23. Sanna S, Esposito V, Andreasen J W, Hjelm J, Zhang W, Kasama T, Simonsen S B, Christensen M, Linderoth S, Pryds N. Enhancement of the chemical stability in confined d-Bi2O3. Nature Materials, 2015, 14(5): 500–504

    Article  CAS  PubMed  Google Scholar 

  24. Wang F, Cao K, Zhang Q, Gong X, Zhou Y. A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts. Journal of Molecular Modeling, 2014, 20(11): 2506

    Article  CAS  PubMed  Google Scholar 

  25. Ho C H, Chan C H, Huang Y S, Tien L C, Chao L C. The study of optical band edge property of bismuth oxide nanowires α-Bi2O3. Optics Express, 2013, 21(10): 11965–11972

    Article  CAS  PubMed  Google Scholar 

  26. Zhang G, Zhang X, Wu Y, Shi W, Guan W. Rapid microwaveassisted synthesis of Bi2O3 tubes and photocatalytic properties for antibiotics. Micro & Nano Letters, 2013, 8(4): 177–180

    Article  CAS  Google Scholar 

  27. Yuvakkumar R, Hong S I. Structural, compositional and textural properties of monoclinic α-Bi2O3 nanocrystals. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 144: 281–286

    Article  CAS  Google Scholar 

  28. Iyyapushpam S, Nishanthi S T, Pathinettam Padiyan D. Synthesis of β-Bi2O3 towards the application of photocatalytic degradation of methyl orange and its instability. Journal of Physics and Chemistry of Solids, 2015, 81: 74–78

    Article  CAS  Google Scholar 

  29. Schlesinger M, Weber M, Schulze S, Hietschold M, Mehring M. Metastable β-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. ChemistryOpen, 2013, 2(4): 146–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan Y, Zhou Z, Cheng Y, Qiu L, Gao C, Zhou J. Template-free fabrication of α-and β-Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification. Journal of Alloys and Compounds, 2014, 605: 102–108

    Article  CAS  Google Scholar 

  31. Xiao X, Hu R, Liu C, Xing C, Qian C, Zuo X, Nan J, Wang L. Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Applied Catalysis B: Environmental, 2013, 140–141: 433–443

    Article  CAS  Google Scholar 

  32. Qiu Y, Yang M, Fan H, Zuo Y, Shao Y, Xu Y, Yang X, Yang S. Nanowires of α-and β-Bi2O3: Phase selective synthesis and application in photocatalysis. CrystEngComm, 2011, 13(6): 1843–1850

    Article  CAS  Google Scholar 

  33. Hou J, Yang C, Wang Z, Zhou W, Jiao S, Zhu H. In situ synthesis of α-β phase heterojunctions on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2013, 142–143: 504–511

    Article  CAS  Google Scholar 

  34. Astuti Y, Arnelli P, Fauziyah A, Nurhayati S, Wulansari A D, Andianingrum R, Widiyandari H, Bhaduri G A. Studying impact of different precipitating agents on crystal sructure, morphology, and photocatalytic activity of bismuth oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 2017, 12(3): 478–484

    Article  CAS  Google Scholar 

  35. Jia B, Zhang J, Luan J, Li F, Han J. Synthesis and growth mechanism of various structures Bi2O3 via chemical precipitate method. Journal of Materials Science Materials in Electronics, 2017, 28(15): 11084–11090

    Article  CAS  Google Scholar 

  36. Hu Y, Li D, Sun F, Weng Y, You S, Shao Y. Temperature-induced phase changes in bismuth oxides and efficient photodegradation of phenol and p-chlorophenol. Journal of Hazardous Materials, 2016, 301: 362–370

    Article  CAS  PubMed  Google Scholar 

  37. Wang W, Chen X, Liu G, Shen Z, Xia D, Wong P K, Yu J C. Monoclinic dibismuth tetraoxide: A new visible-light-driven photocatalyst for environmental remediation. Applied Catalysis B: Environmental, 2015, 176–177: 444–453

    Article  CAS  Google Scholar 

  38. Sajjad S, Leghari S A K, Zhang J. Nonstoichiometric Bi2O3: Efficient visible light photocatalyst. RSC Advances, 2013, 3(5): 1363–1367

    Article  CAS  Google Scholar 

  39. Azizian-Kalandaragh Y, Sedaghatdoust-Bodagh F, Habibi-Yangjeh A. Ultrasound-assisted preparation and characterization of β-Bi2O3 nanostructures: Exploring the photocatalytic activity against rhodamine B. Superlattices and Microstructures, 2015, 81: 151–160

    Article  CAS  Google Scholar 

  40. Zhong S, Zou S, Peng X, Ma J, Zhang F. Effects of calcination temperature on preparation and properties of europium-doped bismuth oxide as visible light catalyst. Journal of Sol-Gel Science and Technology, 2015, 74(1): 220–226

    Article  CAS  Google Scholar 

  41. Xue S, He H, Fan Q, Yu C, Yang K, Huang W, Zhou Y, Xie Y. La/Ce-codoped Bi2O3 composite photocatalysts with high photocatalytic performance in removal of high concentration dye. Journal of Environmental Sciences, 2017, 60: 70–77

    Article  Google Scholar 

  42. Wu S, Fang J, Xua W, Cen C. Hydrothermal synthesis, characterization of visible-light-driven α-Bi2O3 enhanced by Pr3+ doping. Journal of Chemical Technology and Biotechnology, 2013, 88(10): 1828–1835

    Article  CAS  Google Scholar 

  43. Viruthagiri G, Kannan P. Visible light mediated photocatalytic activity of cobalt doped Bi2O3 nanoparticles. Journal of Materials Research and Technology, 2017 (in press) doi:10.1016/j. jmrt.2017.06.011

    Google Scholar 

  44. Qin W, Qi J, Wu X. Photocatalytic property of Cu2+-doped Bi2O3 films under visible light prepared by the sol-gel method. Vacuum, 2014, 107: 204–207

    Article  CAS  Google Scholar 

  45. Raza W, Bahnemann D, Muneer M. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide. Catalysis Today, 2018, 300: 89–98

    Article  CAS  Google Scholar 

  46. Luo X, Zhu G, Peng J, Wei X, Hojamberdiev M, Jin L, Liu P. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation. Applied Surface Science, 2015, 351: 260–269

    Article  CAS  Google Scholar 

  47. Lim H, Rawal S B. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation. Progress in Natural Science: Materials International, 2017, 27(3): 289–296

    Article  CAS  Google Scholar 

  48. Sharma R, Khanuja M, Sharma S N, Sinha O P. Reduced band gap & charge recombination rate in Se doped α-Bi2O3 leads to enhanced photoelectrochemical and photocatalytic performance: Theoretical & experimental insight. International Journal of Hydrogen Energy, 2017, 42(32): 20638–20648

    Article  CAS  Google Scholar 

  49. Liang J, Zhu G, Liu P, Luo X, Tan C, Jin L, Zhou J. Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity. Superlattices and Microstructures, 2014, 72: 272–282

    Article  CAS  Google Scholar 

  50. Li J Z, Zhong J, Zeng J, Feng F, He J. Feng, He J. Improved photocatalytic activity of dysprosium-doped Bi2O3 prepared by sol-gel method. Materials Science in Semiconductor Processing, 2013, 16(2): 379–384

    CAS  Google Scholar 

  51. Li Y, Zhang Z, Zhang Y, Sun X, Zhang J, Wang C, Peng Z, Si H. Preparation of Ag doped Bi2O3 nanosheets with highly enhanced visible light photocatalytic performances. Ceramics International, 2014, 40(8): 13275–13280

    Article  CAS  Google Scholar 

  52. Faisal M, Ibrahim A A, Bouzid H, Al-Sayari S A, Al-Assiri M S, Ismail A A. Hydrothermal synthesis of Sr-doped α-Bi2O3 nanosheets as highly efficient photocatalysts under visible light. Journal of Molecular Catalysis A: Chemical, 2014, 387: 69–75

    Article  CAS  Google Scholar 

  53. Zhu G, Que W, Zhang J. Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation. Journal of Alloys and Compounds, 2011, 509(39): 9479–9486

    Article  CAS  Google Scholar 

  54. Dai Y, Yin L. Synthesis and photocatalytic activity of Ag-Ti-Si ternary modified α-Bi2O3 nanoporous spheres. Materials Letters, 2015, 142: 225–228

    Article  CAS  Google Scholar 

  55. Hu H, Xiao C, Lin X, Chen K, Li H, Zhang X. Controllable fabrication of heterostructured Au/Bi2O3 with plasmon effect for efficient photodegradation of rhodamine 6G. Journal of Experimental Nanoscience, 2017, 12(1): 33–44

    Article  CAS  Google Scholar 

  56. Reddy J K, Srinivas B, Durga Kumari V D, Subrahmanyam M. Sm3+-doped Bi2O3 photocatalyst prepared by hydrothermal synthesis. ChemCatChem, 2009, 1: 492–496

    Article  CAS  Google Scholar 

  57. Jiang S, Wang L, Hao W, Li W, Xin H, Wang W, Wang T. Visiblelight photocatalytic activity of S-doped α-Bi2O3. Journal of Physical Chemistry C, 2015, 119: 14094–14101

    CAS  Google Scholar 

  58. Jiang H Y, Liu J, Cheng K, Sun W, Lin J. Enhanced visible light photocatalysis of Bi2O3 upon fluorination. Journal of Physical Chemistry C, 2013, 117(39): 20029–22003

    Article  CAS  Google Scholar 

  59. Shang J, Gao Y, Hao W C, Jing X, Xin H J, Wang L, Feng H F, Wang T M. Enhancing visible-light photocatalytic activity of α-Bi2O3 via non-metal N and S doping. Chinese Physics B, 2014, 23(3): 038103

    Article  CAS  Google Scholar 

  60. Ortiz-Quiñonez J L, Zumeta-Dubé I, Díaz D, Nava-Etzana N, Cruz-Zaragoza E, Santiago-Jacinto P. Bismuth oxide nanoparticles partially substituted with EuIII, MnIV, and SiIV: Structural, spectroscopic, and optical findings. Inorganic Chemistry, 2017, 56(6): 3394–3403

    Article  CAS  PubMed  Google Scholar 

  61. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278

    Article  CAS  PubMed  Google Scholar 

  62. Ramandi S, Entezari M H, Ghows N. Sono-synthesis of novel magnetic nanocomposite (Ba-α-Bi2O3-g-Fe2O3) for the solar mineralization of amoxicillin in an aqueous solution. Physical Chemistry Research, 2017, 5(2): 253–268

    Google Scholar 

  63. Reverberi A P, Maga L, Cerrato C, Fabiano B. Membrane processes for water recovery and decontamination. Current Opinion in Chemical Engineering, 2014, 6: 75–82

    Article  Google Scholar 

  64. Margha F H, Abdel-Wahed M S, Gad-Allah T A. Nanocrystalline Bi2O3-B2O3-(MoO3 or V2O5) glass-ceramic systems for organic pollutants degradation. Ceramics International, 2015, 41(4): 5670–5676

    Article  CAS  Google Scholar 

  65. Patil S P, Bethi B, Sonawane G H, Shrivastava V S, Sonawane S. Efficient adsorption and photocatalytic degradation of Rhodamine B dye over Bi2O3-bentonite nanocomposites: A kinetic study. Journal of Industrial and Engineering Chemistry, 2016, 34: 356–363

    Article  CAS  Google Scholar 

  66. Patil S P, Shrivastava V S, Sonawane G H, Sonawane S H. Synthesis of novel Bi2O3-montmorillonite nanocomposite with enhanced photocatalytic performance in dye degradation. Journal of Environmental Chemical Engineering, 2015, 3(4): 2597–2603

    Article  CAS  Google Scholar 

  67. Chew K H, Klemeš J J, Alwi S R W, Manan Z A, Reverberi A P. Total site heat integration considering pressure drops. Energies, 2015, 8(2): 1114–1137

    Article  Google Scholar 

  68. Xie T, Liu C, Xu L, Yang J, Zhou W. Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. Journal of Physical Chemistry C, 2013, 117(46): 24601–24610

    Article  CAS  Google Scholar 

  69. Xia D, Lo IMC. Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Research, 2016, 100: 393–404

    Article  CAS  PubMed  Google Scholar 

  70. Ren A, Liu C, Hong Y, Shi W, Lin S, Li P. Enhanced visible-lightdriven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures. Chemical Engineering Journal, 2014, 258: 301–308

    Article  CAS  Google Scholar 

  71. Li J, Zhong J, He X, Huang S, Zeng J, He J, Shi W. Enhanced photocatalytic activity of Fe3O4 decorated Bi2O3. Applied Surface Science, 2013, 284: 527–532

    Article  CAS  Google Scholar 

  72. Ayekoe P Y, Robert D, Lanciné Goné D. TiO2/Bi2O3 photocatalysts for elimination of water contaminants. Part 1: Synthesis of α-and β-Bi2O3 nanoparticles. Environmental Chemistry Letters, 2015, 13(3): 327–332

    CAS  Google Scholar 

  73. Chakraborty A K, Hossain M E, Rhaman M M, Sobahan K M A. Fabrication of Bi2O3/TiO2 nanocomposites and their applications to the degradation of pollutants in air and water under visible-light. Journal of Environmental Sciences, 2014, 26(2): 458–465

    Article  CAS  Google Scholar 

  74. Malligavathy M, Iyyapushpam S, Nishanthi S T, Pathinettam Padiyan D. Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange. Journal of Nanoparticle Research, 2017, 19(4): 144

    Article  CAS  Google Scholar 

  75. Balachandran S, Swaminathan M. Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity. Journal of Physical Chemistry C, 2012, 116(50): 26306–26312

    Article  CAS  Google Scholar 

  76. Štengl V, Henych J, Slušná M, Tolasz J, Zetková K. ZnO/Bi2O3 nanowire composites as a new family of photocatalysts. Powder Technology, 2015, 270: 83–91

    Article  CAS  Google Scholar 

  77. Chen C Y, Weng J C, Chen J H, Ma S H, Chen K H, Horng T L, Tsay C Y, Chang C J, Lin C K, Wug J J. Photocatalyst ZnO-doped Bi2O3 powder prepared by spray pyrolysis. Powder Technology, 2015, 272: 316–321

    Article  CAS  Google Scholar 

  78. Wang X, Ren P, Fan H. Room-temperature solid state synthesis of ZnO/Bi2O3 heterojunction and their solar light photocatalytic performance. Materials Research Bulletin, 2015, 64: 82–87

    Article  CAS  Google Scholar 

  79. Abdelkader E, Nadjia L, Ahmed B. Synthesis, characterization and UV-A light photocatalytic activity of 20 wt% SrO-CuBi2O4 composite. Applied Surface Science, 2012, 258(12): 5010–5024

    Article  CAS  Google Scholar 

  80. Abdulkarem A M, Aref A A, Abdulhabeeb A, Li Y F, Yu Y. Synthesis of Bi2O3/Cu2O nanoflowers by hydrothermal method and its photocatalytic activity enhancement under simulated sunlight. Journal of Alloys and Compounds, 2013, 560: 132–141

    Article  CAS  Google Scholar 

  81. Hossain M K, Samu G F, Gandha K, Santhanagopalan S, Ping Liu J, Janáky C, Rajeshwar K. Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and Its nanocomposites with CuO and α-Bi2O3. Journal of Physical Chemistry C, 2017, 121(15): 8252–8261

    Article  CAS  Google Scholar 

  82. Xie Y, Zhang Y, Yang G, Liu C, Wang J. Hydrothermal synthesis of CuBi2O4 nanosheets and their photocatalytic behavior under visible light irradiation. Materials Letters, 2013, 107: 291–294

    Article  CAS  Google Scholar 

  83. Li T, Luo S. Hydrothermal synthesis of Ag2O/Bi2O3 microspheres for efficient photocatalytic degradation of Rhodamine B under visible light irradiation. Ceramics International, 2015, 41(10): 13135–13146

    Article  CAS  Google Scholar 

  84. Cheng H, Hou J, Zhu H, Guo X M. Plasmonic Z-scheme α/β-Bi2O3-Ag-AgCl photocatalyst with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4(78): 41622–41630

    Article  CAS  Google Scholar 

  85. Gou W, Wu P, Jiang D, Ma X. Synthesis of AgBr@Bi2O3 composite with enhanced photocatalytic performance under visible light. Journal of Alloys and Compounds, 2015, 646: 437–445

    Article  CAS  Google Scholar 

  86. D’Angelo D, Filice S, Scarangella A, Iannazzo D, Compagnini G, Scalese S. Bi2O3/Nexar® polymer nanocomposite membranes for azo dyes removal by UV-vis or visible light irradiation. Catalysis Today, 2017 (in press) doi: 10.1016/j.cattod.2017.12.013

    Google Scholar 

  87. Que Q, Xing Y, He Z, Yang Y, Yin X, Que W. Bi2O3/Carbon quantum dots heterostructured photocatalysts with enhanced photocatalytic activity. Materials Letters, 2017, 209: 220–223

    Article  CAS  Google Scholar 

  88. Dang X, Zhang X, Chen Y, Dong X, Wang G, Ma C, Zhang X, Ma H, Xue M. Preparation of β-Bi2O3/g-C3N4 nanosheet p–n junction for enhanced photocatalytic ability under visible light illumination. Journal of Nanoparticle Research, 2015, 17(2): 1–8

    Article  CAS  Google Scholar 

  89. Chen D, Wu S, Fang J, Lu S, Zhou G, Feng W, Yang F, Chen Y, Fang Z. A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Separation and Purification Technology, 2018, 193: 232–241

    Article  CAS  Google Scholar 

  90. Zhang J, Hu Y, Jiang X, Chen S, Meng S, Fu X. Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. Journal of Hazardous Materials, 2014, 280: 713–722

    Article  CAS  PubMed  Google Scholar 

  91. Han S, Li J, Yang K, Lin J. Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Chinese Journal of Catalysis, 2015, 36(12): 2119–2126

    Article  CAS  Google Scholar 

  92. Cheng L, Liu X, Kang Y. Bi5O7I/Bi2O3: A novel heterojunctionstructured visible light-driven photocatalyst. Materials Letters, 2014, 134: 218–221

    Article  CAS  Google Scholar 

  93. Chen L, Zhang Q, Huang R, Yin S F, Luo S L, Au C T. Porous peanut-like Bi2O3-BiVO4 composites with heterojunctions: onestep synthesis and their photocatalytic properties. Dalton Transactions, 2012, 41(31): 9513–9518

    Article  CAS  PubMed  Google Scholar 

  94. Chen L, He J, Yuan Q, Liu Y, Au C T, Yin S F. Environmentally benign synthesis of branched Bi2O3-Bi2S3 photocatalysts by an etching and re-growth method. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(3): 1096–1102

    Article  CAS  Google Scholar 

  95. Charanpahari A, Umare S S, Sasikala R. Enhanced photodegradation of dyes on Bi2O3 microflakes: Effect of GeO2 addition on photocatalytic activity. Separation and Purification Technology, 2014, 133: 438–442

    Article  CAS  Google Scholar 

  96. Zeng J, Li J, Zhong J, Huang S, Shi W, He J. Synthesis, characterization and solar photocatalytic performance of In2O3-decorated Bi2O3. Materials Science in Semiconductor Processing, 2013, 16(6): 1808–1812

    Article  CAS  Google Scholar 

  97. Peng Y, Yan M, Chen Q G, Fan C M, Zhou H Y, Xu A W. Novel one-dimensional Bi2O3-Bi2WO6 p-n hierarchical heterojunction with enhanced photocatalytic activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2 (22): 8517–8524

    Book  Google Scholar 

  98. Ma J, Zhang L Z, Wang Y H, Lei S L, Luo X B, Chen S H, Zeng G S, Zou J P, Luo S L, Au C T. Mechanism of 2,4-dinitrophenol photocatalytic degradation by z-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chemical Engineering Journal, 2014, 251: 371–380

    Article  CAS  Google Scholar 

  99. Chen S, Hu Y, Ji L, Jiang X, Fu X. Preparation and characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism. Applied Surface Science, 2014, 292: 357–366

    Article  CAS  Google Scholar 

  100. Larosa C, Salerno M, Nanni P, Reverberi A P. Cobalt cementation in an ethanol-water system: Kinetics and morphology of metal aggregates. Industrial & Engineering Chemistry Research, 2012, 51(51): 16564–16572

    Article  CAS  Google Scholar 

  101. Reverberi A P, Kuznetsov N T, Meshalkin V P, Salerno M, Fabiano B. Systematical analysis of chemical methods in metal nanoparticles synthesis. Theoretical Foundations of Chemical Engineering, 2016, 50(1): 59–66

    Article  CAS  Google Scholar 

  102. Toccafondi C, Dante S, Reverberi A P, Salerno M. Biomedical applications of anodic porous alumina. Current Nanoscience, 2015, 11(5): 572–580

    Article  CAS  Google Scholar 

  103. Reverberi A P, Vocciante M, Lunghi E, Pietrelli L, Fabiano B. New trends in the synthesis of nanoparticles by green methods. Chemical Engineering Transactions, 2017, 61: 667–672

    Google Scholar 

  104. Meng X, Zhang Z. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. Journal of Molecular Catalysis A: Chemical, 2016, 423: 533–549

    Article  CAS  Google Scholar 

  105. Li S, Ye G, Chen G. Low-temperature preparation and characterization of nanocrystalline anatase TiO2. Journal of Physical Chemistry C, 2009, 113(10): 4031–4037

    Article  CAS  Google Scholar 

  106. Yong J Y, Klemeš J J, Varbanov P S, Huisingh D. Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. Journal of Cleaner Production, 2016, 111: 1–16

    Article  Google Scholar 

  107. Fan Y V, Varbanov P S, Klemeš J J, Nemet A. Process efficiency optimisation and integration for cleaner production. Journal of Cleaner Production, 2018, 174: 177–183

    Article  Google Scholar 

  108. Reverberi A P, Klemeš J J, Varbanov P S, Fabiano B. A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. Journal of Cleaner Production, 2016, 136: 72–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Andrea P. Reverberi is particularly grateful to Professors Maurizio Ferretti and Davide Comoretto for valuable discussions and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea P. Reverberi.

Additional information

Andrea P. Reverberi is currently Associate Professor in Theory of Development of Chemical Processes in the Department of Chemistry and Industrial Chemistry of the University of Genova (Italy). His research activity is mainly focused on mathematical modeling of heat and mass transfer phenomena in classical or disordered media with a continuum approach, on Monte Carlo simulations of etching and disaggregation of solids with a discrete approach, on modeling of pyrolysis processes, on parameter estimation and numerical data fitting in physics and engineering and, in a more recent period, on the synthesis of nanomaterials by wet chemical methods and their use in photocatalytic processes.

Prof. Reverberi is author of more than 90 published papers and he is currently reviewer for many international journals in Engineering and Physics. He is a member of the editorial board of Materials, section Advanced Nanomaterials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reverberi, A.P., Varbanov, P.S., Vocciante, M. et al. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis. Front. Chem. Sci. Eng. 12, 878–892 (2018). https://doi.org/10.1007/s11705-018-1744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1744-5

Keywords

Navigation