Skip to main content
Log in

FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Polymer-derived porous carbon was used as a support of iron and nickel species with an objective to obtain an efficient oxygen reduction reaction (OER) catalyst. The surface features were extensively characterized using X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. On FeNi-modified carbon the overpotential for OER was very low (280 mV) and comparable to that on noble metal catalyst IrO2. The electrochemical properties have been investigated to reveal the difference between the binary alloy- and single metal-doped carbons. This work demonstrates a significant step for the development of low-cost, environmentally-friendly and highly-efficient OER catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xie W F, Li Z H, Shao M F, Wei M. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Frontiers of Chemical Science and Engineering, 2018, 12(3): 537–554

    Article  CAS  Google Scholar 

  2. Zhang Y, Xiao J, Lv Q Y, Wang S. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes. Frontiers of Chemical Science and Engineering, 2018, 12(3): 494–508

    Article  CAS  Google Scholar 

  3. Li K, Ren T Z, Yuan Z Y, Bandosz T J. Electrodeposited P-Co nanoparticles in deep eutectic solvents and their performance in water splitting. International Journal of Hydrogen Energy, 2018, 43(22): 10448–10457

    Article  CAS  Google Scholar 

  4. Barati Darband G, Aliofkhazraei M, Rouhaghdam A S. Facile electrodeposition of ternary Ni-Fe-Co alloy nanostructure as a binder free, cost-effective and durable electrocatalyst for high-performance overall water splitting. Journal of Colloid and Interface Science, 2019, 547: 407–420

    Article  CAS  PubMed  Google Scholar 

  5. Kim J H, Youn D H, Kawashima K, Lin J, Lim H, Mullins C B. An active nanoporous Ni(Fe) OER electrocatalyst via selective dissolution of Cd in alkaline media. Applied Catalysis B: Environmental, 2018, 225: 1–7

    Article  CAS  Google Scholar 

  6. Lim D, Oh E, Lim C, Shim S E, Baeck S H. Bimetallic NiFe alloys as highly efficient electrocatalysts for the oxygen evolution reaction. Catalysis Today, 2019, 352: 27–33

    Article  Google Scholar 

  7. Qiao L L, Zhu A Q, Zeng W X, Dong R, Tan P F, Ding Z P, Gao P, Wang S Y, Pan J. Achieving electronic structure reconfiguration in metallic carbides for robust electrochemical water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(5): 2453–2462

    Article  CAS  Google Scholar 

  8. Wu D, Wei Y C, Ren X, Ji X Q, Liu Y W, Guo X D, Liu Z, Asiri A M, Wei Q, Sun X P. Co(OH)2 nanoparticle-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Advanced Materials, 2018, 30(9): 1705366

    Article  CAS  Google Scholar 

  9. Yang L, Xie L S, Ren X, Wang Z Q, Liu Z, Du G, Asiri A M, Yao Y D, Sun X P. Hierarchical CuCo2S4 nanoarrays for high-efficient and durable water oxidation electrocatalysis. Chemical Communications, 2018, 54(1): 78–81

    Article  CAS  Google Scholar 

  10. Tong M M, Wang L, Yu P, Liu X, Fu H G. 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Frontiers of Chemical Science and Engineering, 2018, 12(3): 417–424

    Article  CAS  Google Scholar 

  11. Aijaz A, Masa J, Rosler C, Xia W, Weide P, Botz A J R, Fischer R A, Schuhmann W, Muhler M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angewandte Chemie International Edition, 2016, 55(12): 4087–4091

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Z Y, Liu S S, Xiao F, Wang S. Facile synthesis of heterostructured nickel/nickel oxide wrapped carbon fiber: flexible bifunctional gas-evolving electrode for highly efficient overall water splitting. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 529–536

    Article  CAS  Google Scholar 

  13. Cheng N Y, Liu Q, Tian J Q, Sun X P, He Y Q, Zhai S Y, Asiri A M. Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional oxygen evolution electrode. International Journal of Hydrogen Energy, 2015, 40(32): 9866–9871

    Article  CAS  Google Scholar 

  14. Zhang R, Wang Z, Hao S, Ge R X, Ren X, Qu F L, Du G, Asiri A M, Zheng B Z, Sun X P. Surface amorphization: a simple and effective strategy toward boosting the electrocatalytic activity for alkaline water oxidation. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 8518–8522

    Article  CAS  Google Scholar 

  15. Ai L H, Tian T, Jiang J. Ultrathin graphene layers encapsulating nickel nanoparticles derived metal-organic frameworks for highly efficient electrocatalytic hydrogen and oxygen evolution reactions. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4771–4777

    Article  CAS  Google Scholar 

  16. Wang J, Gao D F, Wang G X, Miao S, Wu H H, Li J Y, Bao X H. Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(47): 20067–20074

    Article  CAS  Google Scholar 

  17. Hines D, Bagreev A, Bandosz T J. Surface properties of porous carbon obtained from polystyrene sulfonic acid-based organic salts. Langmuir, 2004, 20(8): 3388–3397

    Article  CAS  PubMed  Google Scholar 

  18. Jagiello J, Olivier J P. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. Journal of Physical Chemistry C, 2009, 113(45): 19382–19385

    CAS  Google Scholar 

  19. Zhang X J, Chen Y F, Wang B, Chen M L, Yu B, Wang X Q, Zhang W L, Yang D X. FeNi nanoparticles embedded porous nitrogen-doped nanocarbon as efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2019, 321(20): 134720

    Article  CAS  Google Scholar 

  20. Zhang X, Xu H M, Li X X, Li Y Y, Yang T B, Liang Y Y. Facile synthesis of nickel-iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting. ACS Catalysis, 2016, 6(2): 580–588

    Article  CAS  Google Scholar 

  21. Zhou Q W, Pu J, Sun X L, Zhu C, Li J C, Wang J, Chang S Z, Zhang HG. In situ surface engineering of nickel inverse opal for enhanced overall electrocatalytic water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(28): 14873–14880

    Article  CAS  Google Scholar 

  22. Kapalka A, Foti G, Comninellis C. Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochemistry Communications, 2008, 10(4): 607–610

    Article  CAS  Google Scholar 

  23. Zhong D, Liu L, Li D, Wei C, Wang Q, Hao G, Zhao Q, Li J. Facile and fast fabrication of iron-phosphate supported on nickel foam as a highly efficient and stable oxygen evolution catalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(35): 18627–18633

    Article  CAS  Google Scholar 

  24. Lu B A, Cao D X, Wang P, Wang G L, Gao Y Y. Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes. International Journal of Hydrogen Energy, 2011, 36(1): 72–78

    Article  CAS  Google Scholar 

  25. Huang J. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochimica Acta, 2018, 281: 170–188

    Article  CAS  Google Scholar 

  26. Cao X L, Ren T Z, Yuan Z Y, Bandosz T J. CaTiO3 perovskite in the framework of activated carbon and its effect on enhanced electrochemical capacitance. Electrochimica Acta, 2018, 268: 73–81

    Article  CAS  Google Scholar 

  27. Chen Z X, Han Y Q, Li T X, Zhang X W, Wang T Q, Zhang Z L. Preparation and electrochemical performances of doped MXene/poly(3,4-ethylenedioxythiophene) composites. Materials Letters, 2018, 220: 305–308

    Article  CAS  Google Scholar 

  28. Lian J Q, Wu Y H, Zhang H A, Gu S Y, Zeng Z W, Ye X Y. One-step synthesis of amorphous Ni-Fe-P alloy as bifunctional electrocatalyst for overall water splitting in alkaline medium. International Journal of Hydrogen Energy, 2018, 43(29): 12929–12938

    Article  CAS  Google Scholar 

  29. Li X H, Antonietti M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis. Chemical Society Reviews, 2013, 42(16): 6593–6604

    Article  CAS  PubMed  Google Scholar 

  30. Yang H B, Miao J W, Hung S F, Chen J Z, Tao H B, Wang X Z, Zhang L P, Chen R, Gao J J, Chen H M, Dai L, Liu B. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2(4): e1501122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lu C L, Xu S P, Liu C H. The role of K2CO3 during the chemical activation of petroleum coke with KOH. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 282–287

    Article  CAS  Google Scholar 

  32. Pinilla J L, Arcelus-Arrillaga P, Puron H, Millan M. Selective catalytic steam cracking of anthracene using mesoporous Al2O3 supported Ni-based catalysts doped with Na, Ca or K. Applied Catalysis A, 2013, 459: 17–25

    Article  CAS  Google Scholar 

  33. Zha M, Pei C, Wang Q, Hu G, Feng L. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid. Journal of Energy Chemistry, 2020, 47: 166–171

    Article  Google Scholar 

  34. Li G L, Xu X C, Yang B B, Cao S, Wang X Y, Fu X D, Shi Y T, Yan Y, Song X D, Hao C. Micelle-template synthesis of a 3D porous FeNi alloy and nitrogen-codoped carbon material as a bifunctional oxygen electrocatalyst. Electrochimica Acta, 2020, 331(20): 135375

    Article  CAS  Google Scholar 

  35. Yang T T, Meng L R, Han S W, Hou J H, Wang S S, Wang X Z. Simultaneous reductive and sorptive removal of Cr(VI) by activated carbon supported β-FeOOH. RSC Advances, 2017, 7(55): 34687–34693

    Article  CAS  Google Scholar 

  36. Seredych M, Rodriguez-Castellon E, Bandosz T J. New CuxSy/nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(47): 20164–20176

    Article  CAS  Google Scholar 

  37. Andreeva A Y, Sukhikh T S, Kozlova S G, Konchenko S N. Exchange interactions and XPS O1s spectra in polynuclear lanthanide complexes with dibenzoylmethanide and 4-hydroxy-2,1,3-benzothiadiazole. Journal of Molecular Structure, 2018, 1166: 190–194

    Article  CAS  Google Scholar 

  38. Pietrzak R, Wachowska H. The influence of oxidation with HNO3 on the surface composition of high-sulphur coals: XPS study. Fuel Processing Technology, 2006, 87(11): 1021–1029

    Article  CAS  Google Scholar 

  39. Ma T, Yuan M W, Islam S M, Li H F, Ma S L, Sun G B, Yang X J. FeNi3 alloy nanocrystals grown on graphene: controllable synthesis, in-depth characterization and enhanced electromagnetic performance. Journal of Alloys and Compounds, 2016, 678: 468–477

    Article  CAS  Google Scholar 

  40. Abellan G, Prima-Garcia H, Coronado E. Graphene enhances the magnetoresistance of FeNi3 nanoparticles in hierarchical FeNi3-graphene nanocomposites. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2016, 4(11): 2252–2258

    Article  CAS  Google Scholar 

  41. Wang H Q, Fan X P, Zhang X H, Huang Y G, Wu Q, Pan Q C, Li Q Y. In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li-O2 batteries. RSC Advances, 2017, 7(38): 23328–23333

    Article  CAS  Google Scholar 

  42. Zhang G, Wang G C, Liu H J, Qu J H, Li J H. Rapidly catalysis of oxygen evolution through sequential engineering of vertically layered FeNi structure. Nano Energy, 2018, 43: 359–367

    Article  CAS  Google Scholar 

  43. Zhao J X, Li X H, Cui G W, Sun X P. Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film. Chemical Communications, 2018, 54(43): 5462–5465

    Article  CAS  PubMed  Google Scholar 

  44. Corrigan D A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. ChemInform, 1987, 18(22): 377–384

    Article  Google Scholar 

  45. Lei W, Guo J P, Wu Z X, Xuan C J, Xiao W P, Wang D L. Highly nitrogen and sulfur dual-doped carbon microspheres for super-capacitors. Science Bulletin, 2017, 62(14): 1011–1017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21421001, 21875118) and the 111 Project (Grant No. B12015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Zhen Ren.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JW., Zhang, H., Ren, TZ. et al. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Front. Chem. Sci. Eng. 15, 279–287 (2021). https://doi.org/10.1007/s11705-020-1965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1965-2

Keywords

Navigation