Skip to main content
Log in

Microstructure and mechanical properties of tungsten composite reinforced by fibre network

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

In this paper the tungsten-fibre-net-reinforced tungsten composites were produced by spark plasma sintering (SPS) using fine W powders and commercial tungsten fibres. The relative density of the samples is above 95%. It was found that the recrystallization area in the fibres became bigger with increasing sintering temperature and pressure. The tungsten grains of fibres kept stable when sintered at 1350°C/16 kN while grown up when sintered at 1800°C/16 kN. The composite sintered at 1350°C/16 kN have a Vickers-hardness of ~610 HV, about 2 times that of the 1800°C/16 kN sintered one. Tensile tests imply that the temperature at which the composites (1350°C/16 kN) begin to exhibit plastic deformation is about 200°C-250°C, which is 400°C lower than that of SPSed pure W. The tensile fracture surfaces show that the increasing fracture ductility comes from pull-out, interface debonding and fracture of fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu L, Liu D P, Hong Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions. Journal of Nuclear Materials, 2016, 471: 1–7

    Article  Google Scholar 

  2. Li X W, Zhang M N, Zheng D H, et al. The oxidation behavior of the WC–10 wt.% Ni3Al composite fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2015, 629: 148–154

    Article  Google Scholar 

  3. Dai S Y,Wang L, Kirschner A, et al. Kinetic modelling of material erosion and impurity transport in edge localized modes in EAST. Nuclear Fusion, 2015, 55(4): 043003 (8 pages)

    Article  Google Scholar 

  4. Palacios T, Monge M A, Pastor J Y. Tungsten–vanadium–yttria alloys for fusion power reactors (I): Microstructural characterization. International Journal of Refractory Metals and Hard Materials, 2016, 54: 433–438

    Article  Google Scholar 

  5. Ekbom L B. Tungsten heavy-metals. Scandinavian Journal of Metallurgy, 1991, 20(3): 190–197

    Google Scholar 

  6. Giannattasio A, Yao Z, Tarleton E, et al. Brittle-ductile transitions in polycrystalline tungsten. Philosophical Magazine, 2010, 90(30): 3947–3959

    Article  Google Scholar 

  7. Miao S, Xie Z M, Yang X D, et al. Effect of hot rolling and annealing on the mechanical properties and thermal conductivity of W–0.5 wt.% TaC alloys. International Journal of Refractory Metals & Hard Materials, 2016, 56: 8–17

    Article  Google Scholar 

  8. Xie Z M, Zhang T, Liu R, et al. Grain growth behavior and mechanical properties of zirconium microalloyed and nano-size zirconium carbide dispersion strengthened tungsten alloys. International Journal of Refractory Metals & Hard Materials, 2015, 51: 180–187

    Article  Google Scholar 

  9. Liu S L, Ye X X, Jiang L, et al. Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 655: 269–276

    Article  Google Scholar 

  10. Wang S, Chen C, Jia Y L, et al. Effects of grain size on the microstructure and texture of cold-rolled Ta–2.5W alloy. International Journal of Refractory Metals & Hard Materials, 2016, 58: 125–136

    Article  Google Scholar 

  11. Sinclair R, Preuss M, Maire E, et al. The effect of fibre fractures in the bridging zone of fatigue cracked Ti–6Al–4V/SiC fibre composites. Acta Materialia, 2004, 52(6): 1423–1438

    Article  Google Scholar 

  12. Kimmig S, Allen I, You J H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers. Journal of Nuclear Materials, 2013, 440(1–3): 272–277

    Article  Google Scholar 

  13. Conner R D, Dandliker R B, Johnson W L. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5-Ni10Be22.5 metallic glass matrix composites. Acta Materialia, 1998, 46(17): 6089–6102

    Article  Google Scholar 

  14. Carvalho P A, Livramento V, Nunes D, et al. Tungsten–tantalum composites for plasma facing applications. Materials for Energy, 2010, 4–8

    Google Scholar 

  15. Pemberton S R, Oberg E K, Dean J, et al. The fracture energy of metal fibre reinforced ceramic composites (MFCs). Composites Science and Technology, 2011, 71(3): 266–275

    Article  Google Scholar 

  16. Son C Y, Kim G S, Lee S B, et al. Dynamic compressive properties of Zr-based amorphous matrix composites reinforced with tungsten continuous fibers or porous foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43(6): 1911–1920

    Article  Google Scholar 

  17. Zhang B, Fu H M, Sha P F, et al. Anisotropic compressive deformation behaviors of tungsten fiber reinforced Zr-based metallic glass composites. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2013, 566: 16–21

    Article  Google Scholar 

  18. Riesch J, Buffiere J Y, Hoschen T, et al. In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system. Acta Materialia, 2013, 61(19): 7060–7071

    Article  Google Scholar 

  19. Riesch J, Aumann M, Coenen J W, et al. Chemically deposited tungsten fibre-reinforced tungsten–The way to a mock-up for divertor applications. Nuclear Materials and Energy, 2016, 9: 75–83

    Article  Google Scholar 

  20. Zhang L H, Jiang Y, Fang Q F, et al. Toughness and microstructure of tungsten fibre net-reinforced tungsten composite produced by spark plasma sintering. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2016, 659: 29–36

    Article  Google Scholar 

  21. Du J, Höschen T, Rasinski M, et al. Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2010, 527(6): 1623–1629

    Article  Google Scholar 

  22. Du J, Höschen T, Rasinski M, et al. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Composites Science and Technology, 2010, 70(10): 1482–1489

    Article  Google Scholar 

  23. Du J, Höschen T, Rasinski M, et al. Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite. Journal of Nuclear Materials, 2011, 417(1–3): 472–476

    Article  Google Scholar 

  24. Xie Z M, Liu R, Fang Q F, et al. Spark plasma sintering and mechanical properties of zirconium micro-alloyed tungsten. Journal of Nuclear Materials, 2014, 444(1–3): 175–180

    Article  Google Scholar 

  25. Asrar N, Meshkov L L, Sokolovskaya E M. Interdiffusional effects in tungsten fiber reinforced nickel-matrix composites. Transactions of the Indian Institute of Metals, 1990, 43(6): 364–367

    Google Scholar 

  26. Lee M H, Das J, Sordelet D J, et al. Effect of tungsten metal particle sizes on the solubility of molten alloy melt: Experimental observation of Gibbs-Thomson effect in nanocomposites. Applied Physics Letters, 2012, 101(12): 124103

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Magnetic Confinement Fusion Program (Grant No. 2015GB112000), the National Natural Science Foundation of China (Grant Nos. 51301164, 11274305 and 11475216), and the Anhui Provincial Natural Science Foundation of China (1408085QE77).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianfeng Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jiang, Y., Fang, Q. et al. Microstructure and mechanical properties of tungsten composite reinforced by fibre network. Front. Mater. Sci. 11, 190–196 (2017). https://doi.org/10.1007/s11706-017-0378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-017-0378-8

Keywords

Navigation