Skip to main content
Log in

A New Sensor for Determination of Anionic Surfactants in Detergent Products with Carbon Nanotubes as Solid Contact

  • Original Article
  • Published:
Journal of Surfactants and Detergents

Abstract

A new solid-state sensor for potentiometric determination of surfactants with a layer of multi-walled carbon nanotubes was prepared. As a sensing material, 1,3-didecyl-2-methylimidazolium–tetraphenylborate ion-pair was used. The investigated sensor showed a Nernstian response for both dodecylbenzenesulphonate (DBS, 57.6 mV/decade of activity between 5 × 10−7 to 1 × 10−3 M) and sodium lauryl sulfate (LS, 58.4 mV/decade of activity between 2 × 10−7 to 2 × 10−3 M). It responded in 8–10 s for each ten-fold concentration change in the range of 1 × 10−6 to 3 × 10−3 M. The detection limits for DS and DBS were 2 × 10−7 and 3 × 10−7 M, respectively. The sensor revealed a stable response (signal drift 2.6 mV/h) and exhibited satisfactory selectivity performances for LS over most of the anions generally used in surfactant-based commercial detergents. The main application of this sensor was the end-point determination in potentiometric titrations of anionic surfactants. The (diisobutyl phenoxy ethoxy ethyl)dimethyl benzyl ammonium chloride (Hyamine), cetyltrimethylammonium bromide, hexadecylpyridinium chloride monohydrate (HDPC) and 1,3-didecyl-2-methylimidazolium chloride were tested as potential cationic titrants, and all exhibited analytically usable titration curves with well-defined equivalence points. The standard solution of HDPC was used as a cationic titrant by all potentiometric titrations. The operational life-time of the sensor described was prolonged to more than 3 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kutsch O. Ceresana Research, market study: surfactants. 2nd ed. Ceresana; 2015.

  2. Research and Markets. Surfactants Market by Type (Anionic, Non-Ionic, Cationic, and Amphoteric), Substrate (Synthetic, and Bio-based), Application (Detergents, Personal Care, Textile, Elastomers & Plastics, Crop Protection, Food & Beverage) - Global Forecast to 2021, Markets and Markets; 2016.

  3. Nazar MF, Mukhtar F, Chaudry S, et al. Biophysical probing of antibacterial Gemifloxacin assimilated in surfactant mediated molecular assemblies. J Mol Liq. 2014;200:361–8. doi:10.1016/j.molliq.2014.11.007.

    Article  CAS  Google Scholar 

  4. International Organization for Standardization. Water quality, determination of surfactants, Part 1: determination of anionic surfactants by the methylene blue spectrometric method, ISO 7875/1. Geneva: Switzerland; 1984.

    Google Scholar 

  5. International Organization for Standardization Surface active agents. Detergents, determination of anionic-active matter by manual or mechanical direct two-phase titration procedure, ISO 2271. Geneva: Switzerland; 1989.

    Google Scholar 

  6. Mohamed GG, Ali TA, El-Shahat MF, et al. Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes. Anal Chim Acta. 2010;673:79–87. doi:10.1016/j.aca.2010.05.016.

    Article  CAS  Google Scholar 

  7. Sak-Bosnar M, Madunić-Čačić D, Sakač N, et al. Potentiometric sensor for polyethoxylated nonionic surfactant determination. Electrochim Acta. 2009;55:528–34. doi:10.1016/j.electacta.2009.09.010.

    Article  CAS  Google Scholar 

  8. Abbas M, Mostafa GA, Homoda AM. Cetylpyridinium–iodomercurate PVC membrane ion selective electrode for the determination of cetylpyridinium cation in Ezafluor mouth wash and as a detector for some potentiometric titrations. Talanta. 2000;53:425–32. doi:10.1016/S0039-9140(00)00496-3.

    Article  CAS  Google Scholar 

  9. Gerlache M, Sentürk Z, Viré JC, Kauffmann JM. Potentiometric analysis of ionic surfactants by a new type of ion-selective electrode. Anal Chim Acta. 1997;349:59–65. doi:10.1016/S0003-2670(97)00277-8.

    Article  CAS  Google Scholar 

  10. Seguí MAJ, Lizondo-Sabater J, Benito A, et al. A new ion-selective electrode for anionic surfactants. Talanta. 2007;71:333–8. doi:10.1016/j.talanta.2006.04.005.

    Article  Google Scholar 

  11. Alonso J, Baró J, Bartrolí J, et al. Flow-through tubular ion-selective electrodes responsive to anionic surfactants for flow-injection analysis. Anal Chim Acta. 1995;308:115–21. doi:10.1016/0003-2670(94)00601-H.

    Article  CAS  Google Scholar 

  12. Abounassif MA, Hefnawy MM, Al-Robian H, Mostafa GAE. Dodecanthiol as novel sensing material for potentiometric determination of sodium dodecyl sulphate anionic surfactant. Int J Electrochem Sci. 2015;10:8668–79.

    CAS  Google Scholar 

  13. Kovács B, Csóka B, Nagy G, Ivaska A. All-solid-state surfactant sensing electrode using conductive polymer as internal electric contact. Anal Chim Acta. 2001;437:67–76. doi:10.1016/S0003-2670(01)00987-4.

    Article  Google Scholar 

  14. Zielińska R, Mulik E, Michalska A, et al. All-solid-state planar miniature ion-selective chloride electrode. Anal Chim Acta. 2002;451:243–9. doi:10.1016/S0003-2670(01)01407-6.

    Article  Google Scholar 

  15. Yin T, Qin W. Applications of nanomaterials in potentiometric sensors. Trends Anal Chem. 2013;51:79–86. doi:10.1016/j.trac.2013.06.009.

    Article  CAS  Google Scholar 

  16. Zhao Q, Gan Z, Zhuang Q. Electrochemical sensors based on carbon nanotubes. Electroanalysis. 2002;14:1609–13. doi:10.1002/elan.200290000.

    Article  CAS  Google Scholar 

  17. Crespo GA, Macho S, Rius FX. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal Chem. 2008;80:1316–22.

    Article  CAS  Google Scholar 

  18. Yin T, Qin W. Applications of nanomaterials in potentiometric sensors. Trends Anal Chem. 2013;51:79–86. doi:10.1016/j.trac.2013.06.009.

    Article  CAS  Google Scholar 

  19. Zhu J, Qin Y, Zhang Y. Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites. Electrochem Commun. 2009;11:1684–7. doi:10.1016/j.elecom.2009.06.025.

    Article  CAS  Google Scholar 

  20. Rius-ruiz FX, Crespo A, Bejarano-nosas D, et al. Potentiometric strip cell based on carbon nanotubes as transducer. Anal Chem. 2011;83:8810–5. doi:10.1021/ac202070r.

    Article  CAS  Google Scholar 

  21. Hernández R, Riu J, Rius FX. Determination of calcium ion in sap using carbon nanotube-based ion-selective electrodes. Analyst. 2010;135:1979–85. doi:10.1039/c0an00148a.

    Article  Google Scholar 

  22. Guinovart T, Parrilla M, Crespo GA, et al. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. Analyst. 2013;138:5208. doi:10.1039/c3an00710c.

    Article  CAS  Google Scholar 

  23. Najafi M, Maleki L, Rafati AA. Novel surfactant selective electrochemical sensors based on single walled carbon nanotubes. J Mol Liq. 2011;159:226–9. doi:10.1016/j.molliq.2011.01.013.

    Article  CAS  Google Scholar 

  24. Galović O, Samardžić M, Hajduković M, Sak-Bosnar M. A new graphene-based surfactant sensor for the determination of anionic surfactants in real samples. Sensors Actuators B. 2016;236:257–67. doi:10.1016/j.snb.2016.05.166.

    Article  Google Scholar 

  25. Madunić Čačić D, Sak-Bosnar M, Galović O, et al. Determination of cationic surfactants in pharmaceutical disinfectants using a new sensitive potentiometric sensor. Talanta. 2008;76:259–64. doi:10.1016/j.talanta.2008.02.023.

    Article  Google Scholar 

  26. Guilbault GG, Durst RA, Frant MS, Freiser H, Hansen EH, Light TS, Pungor E, Rechnitz G, Rice NM, Rohm TJ, Simon W. Recommendations for nomenclature of ion-selective electrodes. Pure Appl Chem. 1976;48:127–32.

    Google Scholar 

  27. Umezawa Y, Bühlmann P, Umezawa K, et al. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. inorganic cations (technical report). Pure Appl Chem. 2000. doi:10.1351/pac200072101851.

    Google Scholar 

  28. Kargosha K, Ahmadi SH, Mansourian M, Azad J. Simultaneous determination of one nonionic and two anionic surfactants using Fourier transform infrared spectrometry and multivariate analysis. Talanta. 2008;75:589–93. doi:10.1016/j.talanta.2007.11.065.

Download references

Acknowledgements

This work has been supported by the Croatian Science Foundation under the project IP-11-2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Sakač.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakač, N., Jozanović, M., Karnaš, M. et al. A New Sensor for Determination of Anionic Surfactants in Detergent Products with Carbon Nanotubes as Solid Contact. J Surfact Deterg 20, 881–889 (2017). https://doi.org/10.1007/s11743-017-1978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-017-1978-0

Keywords

Navigation