Skip to main content
Log in

Protective effect of olive oil and its phenolic compounds against low density lipoprotein oxidation

  • Published:
Lipids

Abstract

The protective effect of phenolic compounds from an olive oil extract, and of olive oils with (extra-virgin) and without (refined) phenolic components, on low density lipoprotein (LDL) oxidation was investigated. When added to isolated LDL, phenolics [0.025–0.3 mg/L caffeic acid equivalents (CAE)] increased the lag time of conjugated diene formation after copper-mediated LDL oxidation in a concentration-dependent manner. Concentrations of phenolics greater than 20 mg/L inhibited formation of thiobarbituric-acid reactive substances after AAPH-initiated LDL oxidation. LDL isolated from plasma after preincubation with phenolics (25–160 mg/L CAE) showed a concentration-dependent increase in the lag time of conjugated diene formation after copper-mediated LDL oxidation. Refined olive oil (0 mg/L CAE) and extra-virgin olive oil (0.1 and 0.3 mg/L CAE) added to isolated LDL caused an increase in the lag time of conjugated diene formation after copper-mediated LDL oxidation that was related to olive oil phenolic content. Multiple regression analysis showed that phenolics were significantly associated with the increase in lag time after adjustment for effects of other antioxidants; α-tocopherol also achieved a statistically significant effect. These results indicate that olive oil phenolic compounds protect LDL against peroxyl radical-dependent and metal-induced oxidation in vitro and could associate with LDL after their incubation with plasma. Both types of olive oil protect LDL from oxidation. Olive oil containing phenolics, however, shows more antioxidant effect on LDL oxidation than refined olive oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azobis(2-amidinopropane) dihydrochloride

ANOVA:

analysis of variance

CAE:

caffeic acid equivalents

CHD:

coronary heart disease

HPLC:

high-performance liquid chromatography

IC:

inhibitory concentration

LDL:

low density lipoprotein

MDA:

malondialdehyde

MUFA:

monounsaturated fatty acids

PBS:

phosphate-buffered saline

PUFA:

polyunsaturated fatty acids

SFA:

saturated fatty acids

TBARS:

thiobarbituric acid-reactive substances

References

  1. Pérez, G., Pena, A., Sala, J., Roset, P., Masiá, R., and Marrugat, J. (1998) Acute Myocardial Infarction Case Fatality, Incidence and Mortality Rates in a Population Registry in Gerona, Spain, 1990–1992, Int. J. Epidemiol. 27, 599–604.

    Article  PubMed  Google Scholar 

  2. De Lorgeril, M., Salen, P., Martin, J.L., Monjaud, I., Delaye, J., and Mamelle, N. (1999) Mediterranean Diet, Traditional Risk Factors, and the Rate of Cardiovascular Complications After Myocardial Infarction. Final Report of the Lyon Diet Heart Study, Circulation 99, 779–785.

    PubMed  Google Scholar 

  3. Renaud, S., de Lorgeril, M., Delaye, M., Guidollet, J., Jacquard, F., Mamelle, N., Martin, J.L., Monjaud, I., Salen, P., and Toubol, P. (1995) Cretan Mediterranean Diet for Prevention of Coronary Hearth Disease, Am. J. Clin. Nutr. 61, 1360–1365.

    Google Scholar 

  4. Witzum, J.L. (1994) The Oxidation Hypothesis of Atherosclerosis, Lancet 344, 793–795.

    Article  Google Scholar 

  5. Mata, P., Alonso, R., López-Farré, A., Ordovas, J.M., Lahoz, C., Garces, C., Caramelo, C., Codoceo, R., Blazquez, E., and de Oya, M. (1996) Effect of Dietary Fat Saturation on LDL Oxidation and Monocyte Adhesion to Human Endothelial Cells in vitro, Arterioscler. Thromb. Vasc. Biol. 16, 1347–1355.

    PubMed  CAS  Google Scholar 

  6. Wiseman, S., Mathot, J.N., de Fouw, N.J., and Tijburg, L.B. (1996) Dietary Non-tocopherol Antioxidants Present in Extra-Virgin Olive Oil Increase the Resistance of Low Density Lipoproteins to Oxidation in Rabbits, Atherosclerosis 120, 15–23.

    Article  PubMed  CAS  Google Scholar 

  7. Parthasaraty, S., Khoo, J.C., Miller, E., Barnett, J., Witzum, J.L., and Steinberg, D. (1990) Low-Density Lipoprotein Rich in Oleic Acid Is Protected Against Oxidative Modification: Implications for Dietary Prevention of Atherosclerosis, Proc. Natl. Acad. Sci. USA 87, 3894–3898.

    Article  Google Scholar 

  8. Papadopoulos, G., and Boskou, D. (1991) Antioxidant Effect of Natural Phenols on Olive Oil, J. Am. Oil Chem. Soc. 68, 669–671.

    CAS  Google Scholar 

  9. Perrin, J.L. (1992) Les Composés Mineurs et les Antioxygènes Naturels de l'Olive et de son Huile, Rev. Fr. Corps Gras 39, 25–32.

    CAS  Google Scholar 

  10. Vinson, J.A., Jang, J., Dabbagh, Y.A., Serry, M.M., and Cai, S. (1995) Plant Polyphenols Exhibit Lipoprotein-Bound Antioxidant Activity Using an in vitro Oxidation Model for Heart Disease, J. Agric. Food Chem. 43, 2798–2799.

    Article  CAS  Google Scholar 

  11. Frankel, E.N., Waterhouse, A.L., and Kinsella, J.E. (1993) Inhibition of Human LDL Oxidation by Resveratrol, Lancet 341, 1103–1104.

    Article  PubMed  CAS  Google Scholar 

  12. Visioli, F., Bellomo, G., Montedoro, G., and Galli, C. (1995) Low Density Lipoprotein Oxidation Is Inhibited in vitro by Olive Oil Constituents, Atherosclerosis 117, 25–32.

    Article  PubMed  CAS  Google Scholar 

  13. Miyake, Y., Yamamoto, K., Tsujihara, N., and Osawa, T. (1998) Protective Effects of Lemon Flavonoids on Oxidative Stress in Diabetic Rats, Lipids 33, 689–695.

    PubMed  CAS  Google Scholar 

  14. Hollman, P.C.H., and Katan, M.B. (1997) Absorption, Metabolism and Health Effects of Dietary Flavonoids in Men, Biomed. Pharmacother. 51, 305–310.

    Article  PubMed  CAS  Google Scholar 

  15. Ishikawa, T., Suzukawa, M., Ito, T., Yoshida, H., Ayaori, M., Nishiwaki, M., Yonemura, A., Hara, Y., and Nakamara, H. (1997) Effect of Tea Flavonoid Supplementation on the Susceptibility of Low Density Lipoprotein to Oxidative Modification, Am. J. Clin. Nutr. 66, 261–266.

    PubMed  CAS  Google Scholar 

  16. Bondia, E.M., Castellote, A.I., López, M.C., and Rivero, M. (1994) Determination of Plasma Fatty Acid Composition in Neonates by Gas Chromatography, J. Chromatogr. 658, 369–374.

    CAS  Google Scholar 

  17. López-Sabater, M.C., Satué, T., Gónzalez, M., and Agramont, A. (1995) α-Tocopherol Content in Trout Oil, Food Chem. 53, 67–70.

    Article  Google Scholar 

  18. Manzi, P., Panfili, G., Esti, M., and Pizzoferrato, L. (1998) Natural Antioxidants in the Unsaponifiable Fraction of Virgin Olive Oils from Different Cultivars, J. Sci. Food Agric. 77, 115–120.

    Article  CAS  Google Scholar 

  19. Singleton, V.L., and Ross, J.A. (1965) Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagent, Am. J. Enol. Vitic. 16, 144–158.

    CAS  Google Scholar 

  20. Betés-Saura, C., Andrés-Lacueva, C., and Lamuela Raventós, R.M. (1996) Phenolic in White Free Run Juices and Wines: Changes During Vinification, J. Agric. Food Chem. 44, 3040–3060.

    Article  Google Scholar 

  21. Tsimidou, M., Papadopoulos, G., and Boskou, D. (1992) Determination of Phenolic Compounds in Virgin Olive Oil by Reversed-Phase HPLC with Emphasis on UV Detection, Food Chem. 44, 53–60.

    Article  CAS  Google Scholar 

  22. Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955) The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum, J. Clin. Invest. 34, 1345–1349.

    Article  PubMed  CAS  Google Scholar 

  23. Esterbauer, H., Striegl, G., Puhl H., and Rotheneder, M. (1989) Continuous Monitoring of in vitro Oxidation of Human Low Density Lipoprotein, Free Radical Res. Commun. 6, 67–75.

    CAS  Google Scholar 

  24. Nourooz-Zadeh, J., Tajaddini-Sarmadi, J., Ling, K.L.E., and Wolff, S.P. (1996) Low-Density Lipoprotein Is the Major Carrier of Lipid Hydroperoxides in Plasma, Biochem. J. 313, 781–786.

    PubMed  CAS  Google Scholar 

  25. De Lorgeril, M., Salen, P., Martin, J.L., Monjaud, I., Boucher, P., and Mammelle, N. (1998) Mediterranean Dietary Pattern in a Randomized Trial: Prolonged Survival and Possible Reduced Cancer Rate, Arch. Intern. Med. 158, 1181–1187.

    Article  PubMed  Google Scholar 

  26. Trevisan, M., Krogh, V., Freudenheim, J., Blake, A., Muti, P., Panico, S., Farinaro, E., Mancini, M., Menotti, A., and Ricci, G. (1990) Consumption of Olive Oil, Butter and Vegetable Oils and Coronary Heart Disease Risk Factors, JAMA 263, 688–692.

    Article  PubMed  CAS  Google Scholar 

  27. Trichopoulou, A., Katsouyanni, K., Stuver, S., Tzala, L., Gnardellis, C., Rimm, E., and Trichopoulos, D. (1995) Consumption of Olive Oil and Specific Food Groups in Relation to Breast Cancer Risk in Greece, J. Natl. Cancer Inst. 87, 110–116.

    PubMed  CAS  Google Scholar 

  28. Kris-Etherthon, P.M. (1999) Monounsaturated Fatty Acids and Risk of Cardiovascular Disease, Circulation 100, 1253–1258.

    Google Scholar 

  29. Price, J.F., and Fowkes, F.G.R. (1997) Antioxidant Vitamins in the Prevention of Cardiovascular Disease, Eur. Heart J. 18, 719–727.

    PubMed  CAS  Google Scholar 

  30. Hollman, P.C.H., and Katan, M.B. (1997) Absorption, Metabolism and Health Effects of Dietary Flavonoids in Man, Biomed. Pharmacother. 51, 305–310.

    Article  PubMed  CAS  Google Scholar 

  31. Kerry, N.L., and Abbey, M. (1997) Red Wine and Fractionated Phenolic Compounds Prepared from Red Wine Inhibit Low Density Lipoprotein Oxidation in vitro, Atherosclerosis 135, 93–102.

    Article  PubMed  CAS  Google Scholar 

  32. Jialal, I., Norkus, E.P., Cristol, L., and Grundy, S.M. (1991) Beta-Carotene Inhibits the Oxidative Modification of Low-Density Lipoprotein, Biochim. Biophys. Acta 1086, 134–138.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Isabel Covas.

About this article

Cite this article

Fitó, M., Covas, M.I., Lamuela-Raventós, R.M. et al. Protective effect of olive oil and its phenolic compounds against low density lipoprotein oxidation. Lipids 35, 633–638 (2000). https://doi.org/10.1007/s11745-000-0567-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0567-1

Keywords

Navigation