Skip to main content
Log in

In-Vitro Toxicological and Proteomic Analysis of Furan Fatty Acids Which are Oxidative Metabolites of Conjugated Linoleic Acids

  • Original Article
  • Published:
Lipids

Abstract

Furan fatty acids (furan-FA) are oxidative products of conjugated linoleic acids (CLA) and may therefore be ingested when CLA-containing food or food-additives are consumed. Due to the presence of a furan ring structure the question arises whether furan-FA may have toxic properties on enterocytes and liver cells. Here we show that furan-FA neither have toxic effects in human colon cancer cell line Caco-2 nor in human hepatoma cell line HepG2 at concentrations that could be relevant for humans. At concentrations up to 100 μM, all tested furan-FA isomers showed no pronounced cytotoxicity and did not affect cellular proliferation or apoptosis up to concentrations of 500 μM. In addition, furan-FA was neither genotoxic in the micronucleus test using Chinese hamster lung fibroblasts (V79) nor in the Ames test independent of the presence or absence of rat liver homogenate for enzymatic activation of the furan ring structure. A proteomic approach revealed that 48 proteins were differentially expressed when Caco-2 cells were incubated with up to 1 mM of 10,13-epoxy-10,12-octadecadienoic acid (10,12-furan-FA). Three of the 30 proteins that could be identified by MALDI-TOF analysis were upregulated and were associated with lipid droplet biogenesis. The remaining 27 proteins were downregulated and were considered to be associated with general cellular processes such as DNA replication and transcription, protein biosynthesis and protein processing, lipid and energy metabolism. From the proteomic data we conclude that furan-FA is predominantly stored in lipid droplets thereby downregulating cellular metabolic activity and driving the cells into a state of rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional polyacrylamide gel electrophoresis

CLA:

Conjugated linoleic acid

Furan-FA:

Furan fatty acid

IEF:

Isoelectric focusing

IPG:

Immobilized pH gradient

MALDI-TOF:

Matrix-assisted laser desorption ionisation-time of flight

ER:

Endoplasmic reticulum

References

  1. Kepler CR, Hirons KP, McNeill JJ, Tove SB (1966) Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J Biol Chem 241:1350–1354

    PubMed  CAS  Google Scholar 

  2. Kepler CR, Tucker WP, Tove SB (1970) Biohydrogenation of unsaturated fatty acids. IV. Substrate specificity and inhibition of linoleate delta-12-cis, delta-11-trans-isomerase from Butyrivibrio fibrisolvens. J Biol Chem 245:3612–3620

    PubMed  CAS  Google Scholar 

  3. Ha YL, Grimm NK, Pariza MW (1987) Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8:1881–1887

    Article  PubMed  CAS  Google Scholar 

  4. Truitt A, McNeill G, Vanderhoek JY (1999) Antiplatelet effects of conjugated linoleic acid isomers. Biochim Biophys Acta 1438:239–246

    Article  PubMed  CAS  Google Scholar 

  5. Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK (2000) Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J Am Coll Nutr 19:472S–477S

    PubMed  CAS  Google Scholar 

  6. Lee KN, Kritchevsky D, Pariza MW (1994) Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 108:19–25

    Article  PubMed  CAS  Google Scholar 

  7. Nicolosi RJ, Rogers EJ, Kritchevsky D, Scimeca JA, Huth PJ (1997) Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery 22:266–277

    PubMed  CAS  Google Scholar 

  8. O’Shea M, Bassaganya-Riera J, Mohede IC (2004) Immunomodulatory properties of conjugated linoleic acid. Am J Clin Nutr 79:1199S–1206S

    PubMed  Google Scholar 

  9. Baddini FA, Fernandes PA, da Ferreira CN, Goncalves RB (2009) Conjugated linoleic acid (CLA): effect modulation of body composition and lipid profile. Nutr Hosp 24:422–428

    Google Scholar 

  10. Clement L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief S, Staels B, Besnard P (2002) Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409

    Article  PubMed  CAS  Google Scholar 

  11. Riserus U, Vessby B, Arnlov J, Basu S (2004) Effects of cis-9,trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr 80:279–283

    PubMed  CAS  Google Scholar 

  12. Chung S, Brown JM, Provo JN, Hopkins R, McIntosh MK (2005) Conjugated linoleic acid promotes human adipocyte insulin resistance through NFkappaB-dependent cytokine production. J Biol Chem 280:38445–38456

    Article  PubMed  CAS  Google Scholar 

  13. Yurawecz MP, Hood JK, Mossoba MM, Roach JA, Ku Y (1995) Furan fatty acids determined as oxidation products of conjugated octadecadienoic acid. Lipids 30:595–598

    Article  PubMed  CAS  Google Scholar 

  14. Lu SC, Huang HY (1994) Comparison of sulfur amino acid utilization for GSH synthesis between HepG2 cells and cultured rat hepatocytes. Biochem Pharmacol 47:859–869

    Article  PubMed  CAS  Google Scholar 

  15. Urani C, Doldi M, Crippa S, Camatini M (1998) Human-derived cell lines to study xenobiotic metabolism. Chemosphere 37:2785–2795

    Article  PubMed  CAS  Google Scholar 

  16. Lampen A, Bader A, Bestmann T, Winkler M, Witte L, Borlak JT (1998) Catalytic activities, protein- and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines. Xenobiotica 28:429–441

    Article  PubMed  CAS  Google Scholar 

  17. Wenzel U, Nickel A, Daniel H (2005) Increased carnitine-dependent fatty acid uptake into mitochondria of human colon cancer cells induces apoptosis. J Nutr 135:1510–1514

    PubMed  CAS  Google Scholar 

  18. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  PubMed  CAS  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  20. Rabilloud T (2000) Detecting proteins separated by 2-D gel electrophoresis. Anal Chem 72:48A–55A

    Article  PubMed  CAS  Google Scholar 

  21. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  22. EFSA Panel on Dietetic Products NaA (2010) Opinion on the safety of “conjugated linoleic acid (CLA)-rich oil” as a novel food ingredient. EFSA J 8:1601–1642

    Google Scholar 

  23. Chen LJ, Hecht SS, Peterson LA (1995) Identification of cis-2-butene-1,4-dial as a microsomal metabolite of furan. Chem Res Toxicol 8:903–906

    Article  PubMed  CAS  Google Scholar 

  24. Kedderis GL, Carfagna MA, Held SD, Batra R, Murphy JE, Gargas ML (1993) Kinetic analysis of furan biotransformation by F-344 rats in vivo and in vitro. Toxicol Appl Pharmacol 123:274–282

    Article  PubMed  CAS  Google Scholar 

  25. Parmar D, Burka LT (1993) Studies on the interaction of furan with hepatic cytochrome P-450. J Biochem Toxicol 8:1–9

    Article  PubMed  CAS  Google Scholar 

  26. Byrns MC, Predecki DP, Peterson LA (2002) Characterization of nucleoside adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan. Chem Res Toxicol 15:373–379

    Article  PubMed  CAS  Google Scholar 

  27. Byrns MC, Vu CC, Neidigh JW, Abad JL, Jones RA, Peterson LA (2006) Detection of DNA adducts derived from the reactive metabolite of furan, cis-2-butene-1,4-dial. Chem Res Toxicol 19:414–420

    Article  PubMed  CAS  Google Scholar 

  28. Heppner CW, Schlatter JR (2007) Data requirements for risk assessment of furan in food. Food Addit Contam 24(Suppl 1):114–121

    Article  PubMed  CAS  Google Scholar 

  29. Glatt H, Schneider H, Liu Y (2005) V79-hCYP2E1-hSULT1A1, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals. Mutat Res 580:41–52

    Article  PubMed  CAS  Google Scholar 

  30. Peterson LA, Naruko KC, Predecki DP (2000) A reactive metabolite of furan, cis-2-butene-1,4-dial, is mutagenic in the Ames assay. Chem Res Toxicol 13:531–534

    Article  PubMed  CAS  Google Scholar 

  31. Durling LJ, Svensson K, Abramsson-Zetterberg L (2007) Furan is not genotoxic in the micronucleus assay in vivo or in vitro. Toxicol Lett 169:43–50

    Article  PubMed  CAS  Google Scholar 

  32. Kellert M, Brink A, Richter I, Schlatter J, Lutz WK (2008) Tests for genotoxicity and mutagenicity of furan and its metabolite cis-2-butene-1,4-dial in L5178Y tk ± mouse lymphoma cells. Mutat Res 657:127–132

    Article  PubMed  CAS  Google Scholar 

  33. Mugford CA, Carfagna MA, Kedderis GL (1997) Furan-mediated uncoupling of hepatic oxidative phosphorylation in Fischer-344 rats: an early event in cell death. Toxicol Appl Pharmacol 144:1–11

    Article  PubMed  CAS  Google Scholar 

  34. Moser GJ, Foley J, Burnett M, Goldsworthy TL, Maronpot R (2009) Furan-induced dose-response relationships for liver cytotoxicity, cell proliferation, and tumorigenicity (furan-induced liver tumorigenicity). Exp Toxicol Pathol 61:101–111

    Article  PubMed  CAS  Google Scholar 

  35. Chen T, Mally A, Ozden S, Chipman JK (2010) Low doses of the carcinogen furan alter cell cycle and apoptosis gene expression in rat liver independent of DNA methylation. Environ Health Perspect 118:1597–1602

    Article  PubMed  CAS  Google Scholar 

  36. Fransson-Steen R, Goldsworthy TL, Kedderis GL, Maronpot RR (1997) Furan-induced liver cell proliferation and apoptosis in female B6C3F1 mice. Toxicology 118:195–204

    Article  PubMed  CAS  Google Scholar 

  37. Lampen A, Leifheit M, Voss J, Nau H (2005) Molecular and cellular effects of cis-9, trans-11-conjugated linoleic acid in enterocytes: effects on proliferation, differentiation, and gene expression. Biochim Biophys Acta 1735:30–40

    Article  PubMed  CAS  Google Scholar 

  38. Cho HJ, Kwon GT, Park JH (2009) Trans-10,cis-12 Conjugated linoleic acid induces depolarization of mitochondrial membranes in HT-29 human colon cancer cells: a possible mechanism for induction of apoptosis. J Med Food 12:952–958

    Article  PubMed  CAS  Google Scholar 

  39. Kim EJ, Holthuizen PE, Park HS, Ha YL, Jung KC, Park JH (2002) Trans-10, cis-12-conjugated linoleic acid inhibits Caco-2 colon cancer cell growth. Am J Physiol Gastrointest Liver Physiol 283:G357–G367

    PubMed  CAS  Google Scholar 

  40. Park HS, Chun CS, Kim S, Ha YL, Park JH (2006) Dietary trans-10, cis-12 and cis-9,trans-11 conjugated linoleic acids induce apoptosis in the colonic mucosa of rats treated with 1,2-dimethylhydrazine. J Med Food 9:22–27

    Article  PubMed  CAS  Google Scholar 

  41. Mougios V, Matsakas A, Petridou A, Ring S, Sagredos A, Melissopoulou A, Tsigilis N, Nikolaidis M (2001) Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J Nutr Biochem 12:585–594

    Article  PubMed  CAS  Google Scholar 

  42. Buhrke T, Merkel R, Lengler I, Lampen A (2012) Absorption and metabolism of cis-9,trans-11-CLA and of its oxidation product 9,11-furan fatty acid by Caco-2 cells. Lipids 47:435–442

    Article  PubMed  CAS  Google Scholar 

  43. Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR (2002) Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277:32253–32257

    Article  PubMed  CAS  Google Scholar 

  44. Yamaguchi T, Omatsu N, Omukae A, Osumi T (2006) Analysis of interaction partners for perilipin and ADRP on lipid droplets. Mol Cell Biochem 284:167–173

    Article  PubMed  CAS  Google Scholar 

  45. Soni KG, Mardones GA, Sougrat R, Smirnova E, Jackson CL, Bonifacino JS (2009) Coatomer-dependent protein delivery to lipid droplets. J Cell Sci 122:1834–1841

    Article  PubMed  CAS  Google Scholar 

  46. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    Article  PubMed  CAS  Google Scholar 

  47. Arvand A, Bastians H, Welford SM, Thompson AD, Ruderman JV, Denny CT (1998) EWS/FLI1 up regulates mE2-C, a cyclin-selective ubiquitin conjugating enzyme involved in cyclin B destruction. Oncogene 17:2039–2045

    Article  PubMed  CAS  Google Scholar 

  48. McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63:123–143

    Article  PubMed  CAS  Google Scholar 

  49. Kamiya H, Hori M, Arimori T, Sekiguchi M, Yamagata Y, Harashima H (2009) NUDT5 hydrolyzes oxidized deoxyribonucleoside diphosphates with broad substrate specificity. DNA Repair (Amst) 8:1250–1254

    Article  CAS  Google Scholar 

  50. Myers RW, Wray JW, Fish S, Abeles RH (1993) Purification and characterization of an enzyme involved in oxidative carbon–carbon bond cleavage reactions in the methionine salvage pathway of Klebsiella pneumoniae. J Biol Chem 268:24785–24791

    PubMed  CAS  Google Scholar 

  51. Wray JW, Abeles RH (1995) The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases. J Biol Chem 270:3147–3153

    Article  PubMed  CAS  Google Scholar 

  52. Coe H, Michalak M (2009) Calcium binding chaperones of the endoplasmic reticulum. Gen Physiol Biophys 28 Spec No Focus F96–F103

  53. Rojas E, Arispe N, Haigler HT, Burns AL, Pollard HB (1992) Identification of annexins as calcium channels in biological membranes. Bone Miner 17:214–218

    Article  PubMed  CAS  Google Scholar 

  54. Benes P, Vetvicka V, Fusek M (2008) Cathepsin D-many functions of one aspartic protease. Crit Rev Oncol Hematol 68:12–28

    Article  PubMed  Google Scholar 

  55. Ho MS, Tsai PI, Chien CT (2006) F-box proteins: the key to protein degradation. J Biomed Sci 13:181–191

    Article  PubMed  CAS  Google Scholar 

  56. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Linda Brandenburger, Brigitte Finke, Anja Köllner, Christine Meckert, and Marlies Sagmeister for technical assistance. This work was funded by the Deutsche Forschungsgemeinschaft (DFG project LA 1177/5-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Buhrke.

About this article

Cite this article

Lengler, I., Buhrke, T., Scharmach, E. et al. In-Vitro Toxicological and Proteomic Analysis of Furan Fatty Acids Which are Oxidative Metabolites of Conjugated Linoleic Acids. Lipids 47, 1085–1097 (2012). https://doi.org/10.1007/s11745-012-3713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-012-3713-y

Keywords

Navigation