Skip to main content
Log in

Efficiency of texture image filtering and its prediction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Textures are typical elements of natural scene images widely used in pattern recognition and image classification. Noise, often being present in acquired images, deteriorates texture features (characteristics), and it is desirable both to suppress it and to preserve a texture. This task is quite difficult even for the most advanced filters, and the resulting denoising efficiency can be quite low. Due to this, it is desirable to predict a denoising efficiency before filtering to decide whether it is worth filtering a given image or not. In this paper, we analyze several quantitative criteria (metrics) that can characterize filtering efficiency. Prediction strategy is described and its accuracy is studied. Several modern filtering techniques are analyzed and compared. Based on this, practical recommendations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haralick, R., Dori, D.: A pattern recognition approach to detection of complex edges. Pattern Recogn. Lett. 16(5), 517–529 (1995)

    Article  MATH  Google Scholar 

  2. Schowengerdt, R.: Remote Sensing: Models and Methods for Image Processing. Academic, Cambridge (2006)

    Google Scholar 

  3. Cheikh, F., Cramariuc, B., Gabbouj, M.: MUVIS: a system for content-based indexing and retrieval in large image databases. In: Proceedings Workshop on Very Low Bit Rate Coding, VLBV, pp. 41–44, Urbana, Oct (1998)

  4. Tsymbal, O., Lukin, V., Ponomarenko, N., Zelensky, A., Egiazarian, K., Astola, J.: Three-state locally adaptive texture preserving filter for radar and optical image processing. EURASIP J. Appl. Sig. Process. 8, 1185–1204 (2005)

    Article  MATH  Google Scholar 

  5. Rubel, A., Lukin, V., Uss, M., Vozel, B., Pogrebnyak, O., Egiazarian, K.: Efficiency of texture image enhancement by DCT-based filtering. Neurocomputing 175(Part B), 948–965 (2016)

    Article  Google Scholar 

  6. Lebrun, M., Colom, M., Buades, A., Morel, J.M.: Secrets of image denoising cuisine. Acta Numer. 21, 475–576 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gilboa, G., Sochen, N., Zeevi, Y.Y.: Variational denoising of partly-textured images by spatially varying constraints. IEEE Trans. Image Process. 15(8), 2281–2289 (2006)

    Article  Google Scholar 

  8. Zuo, W., Zhang, L., Song, C., Zhang, D., Gao, H.: Gradient histogram estimation and preservation for texture enhanced image denoising. IEEE Trans. Image Process. 23(6), 2459–2472 (2014)

    Article  MathSciNet  Google Scholar 

  9. Buades, A., Coll, A., Morel, J.M.: A non-local algorithm for image denoising. In: Proceeding of Computer Vision and Pattern Recognition (CVPR), pp. 60–65, San Diego, June (2005)

  10. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pogrebnyak, O., Lukin, V.: Wiener discrete cosine transform based image filtering. SPIE J. Electron. Imaging 21(4), 1–15 (2012)

    Google Scholar 

  12. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  13. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(6), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  14. Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Trans. Image Process. 19(4), 895–911 (2010)

    Article  MathSciNet  Google Scholar 

  15. Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., Jin, L., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., Jay Kuo, C.-C.: Color image database TID2013: peculiarities and preliminary results. In: Proceedings of EUVIP, pp. 106–111, Paris, June (2013)

  16. Ponomarenko, N., Silvestri, F., Egiazarian, K., Carli, M., Astola, J., Lukin, V.: On between-coefficient contrast masking of DCT basis functions. In: Proceeding of International Workshop on Video Processing and Quality Metrics VPQM-07, Scottsdale, Jan (2007)

  17. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  18. Abramova, V.V., Abramov, S.K., Lukin, V.V., Egiazarian, K.O., Astola, J.T.: On required accuracy of mixed noise parameter estimation for image enhancement via denoising. EURASIP J. Image Video Process. 2014, 3 (2014)

    Article  Google Scholar 

  19. Abramov, S., Krivenko, S., Roenko, A., Lukin, V., Djurovic, I., Chobanu, M.: Prediction of filtering efficiency for DCT-based image denoising. In: Proceeding of 2nd Mediterranean Conference on Embedded Computing (MECO), pp. 97–100, Budva, June (2013)

  20. Rubel, O., Lukin, V.: An improved prediction of DCT-based filters efficiency using regression analysis. Inf. Telecommun. Sci. 5(1), 30–41 (2014)

    Google Scholar 

  21. Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(5), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  22. Cameron, C., Windmeijer, A., Frank, A.G., Gramajo, H., Cane, D.E., Khosla, C.: An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econ. 77(2), 329–342 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Coifman, R.R., Donoho, D.: Translation-invariant denoising. In: Antoniadis, A., Oppenheim, G. (eds.) Wavelets and Statistics, pp. 125–150. Springer, New York (1995)

  24. Vijay, M., Subha, S.V.: Spatially adaptive image restoration using LPG-PCA and JBF. In: Proceedings of International Conference on Machine Vision and Image Processing MVIP, pp. 53–56, Tamil Nadu, Dec (2012)

  25. Talebi, H., Zhu, X., Milanfar, P.: How to SAIF-ly boost denoising performance. IEEE Trans. Image Process. 22(4), 1470–1485 (2013)

    Article  MathSciNet  Google Scholar 

  26. Aharon, M., Elad, M., Bruckstein, A.M.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  27. Chatterjee, P., Milanfar, P.: Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Process. 18(7), 1438–1451 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Instituto Politecnico Nacional as a part of research Project 20161173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lukin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubel, O., Lukin, V., Abramov, S. et al. Efficiency of texture image filtering and its prediction. SIViP 10, 1543–1550 (2016). https://doi.org/10.1007/s11760-016-0969-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0969-3

Keywords

Navigation