Skip to main content

Advertisement

Log in

Towards multi-stage texture-based active contour image segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a three-stage approach to incorporation of texture analysis into a two-dimensional active contour segmentation framework. This approach allows to utilise texture information alongside other image features. The proposed method starts with an initial unsupervised feature computation and selection, then moves to a fast contour evolution process and ends with a final refinement stage. The algorithm is designed to be general in its nature and not restricted to any particular texture feature extraction method. In this paper, the initial stage generates a set of feature maps consisting of grey-level co-occurrence matrix and Gabor features. The implementation makes an extensive use of hardware acceleration for efficient calculation of a relatively large number of features. The performance of the method was tested on various synthetic and natural images and compared with results of other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Awate, S.P., Tasdizen, T., Whitaker, R.T.: Unsupervised texture segmentation with nonparametric neighborhood statistics. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision—ECCV 2006, pp. 494–507. Springer, Berlin (2006)

    Chapter  Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  3. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  4. Cohen, L.D.: On active contour models and balloons. CVGIP Image Underst. 53, 211–218 (1991)

    Article  MATH  Google Scholar 

  5. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A. 2(7), 1160–1169 (1985)

  6. Esedoglu, S., Ruuth, S., Tsai, R.: Threshold dynamics for shape reconstruction and disocclusion. In: Proceeding IEEE International Conference on Image Processing, vol. 2, pp. 502–505 (2005)

  7. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst., Man, Cybern. Syst. 6, 610–621 (1973)

    Article  Google Scholar 

  8. Heimann, T., van Ginneken, B., Styner, M.A., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28, 1251–1265 (2009)

    Article  Google Scholar 

  9. Houhou, N., Thiran, J., Bresson, X.: Fast texture segmentation model based on the shape operator and active contour. In: Proceeding IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8 (2008)

  10. Huang, X., Qian, Z., Huang, R., Metaxas, D.: Deformable-model based textured object segmentation. Energy Minimization Methods in Computer Vision and Pattern Recognition pp. 119–135 (2005)

  11. Jain, A., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  13. Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1186–1191 (1993)

    Article  Google Scholar 

  14. Lefohn, A.E., Cates, J.E., Whitaker, R.T.: Interactive, GPU-based level sets for 3D segmentation. In: Ellis, R.E., Peters, T.M., (eds.) Proceeding Medical Image Computing Computer Assisted Intervention (MICCAI), pp. 564–572. Springer (2003)

  15. Mcinerney, T., Terzopoulos, D.: T-snakes: Topology adaptive snakes. Med. Image Anal. 4(2), 73–91 (2000)

  16. Moore, P., Molloy, D.: A survey of computer-based deformable models. International Machine Vision and Image Processing Conference pp. 55–66 (2007)

  17. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

  18. Pujol, O., Radeva, P.: Texture segmentation by statistical deformable models. Int. J. Image Gr. 4(03), 433–452 (2004)

    Article  Google Scholar 

  19. Reed, T., DuBuf, J.: A review of recent texture segmentation and feature extraction techniques. CVGIP Image Underst. 57(3), 359–372 (1993)

  20. Reska, D., Boldak, C., Kretowski, M.: A texture-based energy for active contour image segmentation. In: Image Processing Communications Challenges 6, Advances in Intelligent Systems and Computing, vol. 313, pp. 187–194. Springer International Publishing (2015)

  21. Reska, D., Jurczuk, K., Boldak, C., Kretowski, M.: MESA: Complete approach for design and evaluation of segmentation methods using real and simulated tomographic images. Biocybern. Biomed. Eng. 34(3), 146–158 (2014)

    Article  Google Scholar 

  22. Reska, D., Kretowski, M.: HIST - an application for segmentation of hepatic images. Zesz. Naukowe Politech. Bialostoc. Inform. 7, 71–93 (2011)

    Google Scholar 

  23. Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229–251 (1994)

    Article  Google Scholar 

  24. Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: Proceeding IEEE Conference on Computer Vision and Pattern Recogition. pp. 699–704 (2003)

  25. Sagiv, C., Sochen, N., Zeevi, Y.: Integrated active contours for texture segmentation. IEEE Trans. Image Process. 15(6), 1633–1646 (2006)

    Article  Google Scholar 

  26. Shen, T., Zhang, S., Huang, J., Huang, X., Metaxas, D.: Integrating shape and texture in 3D deformable models: from Metamorphs to Active Volume Models. In: Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, pp. 1–31. Springer (2011)

  27. Singh, P., Garg, R.: Fixed point ica based approach for maximizing the non-gaussianity in remote sensing image classification. J. Indian Soc. Remote Sens. 43(4), 851–858 (2015)

    Article  Google Scholar 

  28. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7(3), 310–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tatu, A., Bansal, S.: A novel active contour model for texture segmentation. In: Energy Minimization Methods Computer Vision Pattern Recognition. pp. 223–236. Springer (2015)

  30. Wu, Q., Gan, Y., Lin, B., Zhang, Q., Chang, H.: An active contour model based on fused texture features for image segmentation. Neurocomputing 151, 1133–1141 (2015)

    Article  Google Scholar 

  31. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yadollahi, M., Procházka, A., Kašparová, M., Vyšata, O.: The use of combined illumination in segmentation of orthodontic bodies. Signal, Image and Video Process. 9(1), 243–250 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Bialystok University of Technology under Grants W/WI/1/2016 and S/WI/2/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Reska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reska, D., Boldak, C. & Kretowski, M. Towards multi-stage texture-based active contour image segmentation. SIViP 11, 809–816 (2017). https://doi.org/10.1007/s11760-016-1026-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1026-y

Keywords

Navigation