Skip to main content
Log in

Seizure prediction with cross-higher-order spectral analysis of EEG signals

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Epilepsy is a neurological disorder that happens because of the propagation of abnormal signals produced by clusters of neurons in the brain. The majority of those with epileptic seizures can be treated by drug therapies and surgery. However, 25% of the patients with diagnosed epilepsy continue to have seizures. Seizures can cause serious injuries and limit the independence and mobility of an individual. Seizure detection and prediction could lead to a better understanding of seizures and with that help preventing patient injury.This paper discusses extraction and evaluation of nonlinear multivariate features using the cross-bispectral method to help predict epileptic seizure occurrences. These ten statistic features were employed to discriminate pre-ictal from interictal states. Therefore, the features were given to the support vector machine classifier as the input. Outputs were then processed in order to evaluate the sensitivity, false positive rate (FPR) and the prediction time. The proposed method obtained sensitivity of 100% and average FPR of 0.044 per hour by using the “Freiburg epileptic seizure prediction” dataset. This high sensitivity index and low FPR index compared with other studies show the ability of cross-higher-order spectral method to analyze epileptic EEG signals. The proposed method is also fast and easy and may be helpful in other applications of EEG analysis such as sleep stage identification and brain–computer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Firpi, H., Goodman, E.D., Echauz, J.: Epileptic seizure detection using genetically programmed artificial features. IEEE Trans. Biomed. Eng. 54, 212–224 (2007)

    Google Scholar 

  2. Lehnert, K., Mormann, F., Kreuz, T., Andrzejak, R.G., Rieke, C., David, P., Elger, C.E.: Seizure prediction by nonlinear EEG analysis. IEEE Eng. Med. Biol. Mag. 22, 57–63 (2003)

    Google Scholar 

  3. Srinivasan, V., Eswaran, C., Siraam, N.: Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf Technol. Biomed. 11, 288–295 (2007)

    Google Scholar 

  4. Mohammadpoury, Z., Nasrolahadeh, M., Haddadnia, J.: Epileptic seizure detection in EEG signals based on the weighted visibility graph entropy. Seizure Eur. J. Epilepsy 50, 202–208 (2017)

    Google Scholar 

  5. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. SIVP 8, 1323–1334 (2014)

    Google Scholar 

  6. Quintero-Rincon, A., Prendes, J., Pereyra, M., Batatia, H., Risk, M.: Multivariate Bayesian classification of epilepsy EEG signals. In: 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1–5. IEEE

  7. Behbahani, S., Nasrabadi, A.M.: The relation of susceptibility levels of hypnosis and different mental tasks. SIVP 9, 903–911 (2015)

    Google Scholar 

  8. Mahmoodian, N., Boese, A., Friebe, M., Haddadnia, J.: Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure Eur. J. Epilepsy 66, 4–11 (2019)

    Google Scholar 

  9. Iasemidis, L.D., Sackellares, J.C., Zaveri, H.P., Williams, W.J.: Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr. 2, 187–201 (1999)

    Google Scholar 

  10. Nasrolahzadeh, M., Mohammadpoory, Z., Haddadnia, J.: Higher-order spectral analysis of spontaneous speech signals in Alzheimer’s disease. Cogn. Neurodyn. 12, 583–596 (2018)

    Google Scholar 

  11. Bandarabadi, M., Teixeira, C.A., Rasekhi, J., Dourado, A.: Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 2, 237–248 (2014)

    Google Scholar 

  12. Litt, B., Echauz, J.: Prediction of epileptic seizures. Lancet Neurol. 1, 22–30 (2002)

    Google Scholar 

  13. Yuan, S., Zhou, W., Chen, L.: Epileptic seizure prediction using diffusion distance and bayesian linear discriminate analysis on intracranial EEG. Int. J. Neural Syst. 28, 1750043 (2018)

    Google Scholar 

  14. Yuan, S., Zhou, W., Chen, L.: Epileptic seizure predictors based on computational intelligence techniques: a comparative study with 278 patients. Comput. Methods Programs Biomed. 114, 324–336 (2014)

    Google Scholar 

  15. Rasekhi, J., Mollaei, M.R.K., Bandarabadi, M., Teixeira, C.A., Dourado, A.: Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods. J. Neurosci. Methods 57, 3–1124 (2017)

    Google Scholar 

  16. Usman, S.M., Usman, M., Fong, S.: Epileptic seizures prediction using machine learning methods. Comput. Math. Methods Med. 2017 (2017)

  17. Alickovic, E., Kevric, J., Subasi, A.: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Signal Process. Control 39, 94–102 (2018)

    Google Scholar 

  18. Lehnertz, K., Litt, B.: The first international collaborative workshop on seizure prediction: summary and data description. Clin. Neurophysiol. 116, 493–505 (2005)

    Google Scholar 

  19. Mormann, F., Kreuz, T., Rieke, C., Andrzejak, R.G.A., Kraskov, D.P., Elger, C.A., Lehnertz, K.: On the predictability of epileptic seizures. Clin. Neurophysiol. 116, 569–587 (2005)

    Google Scholar 

  20. Mormann, F., Andrzejak, R.G., Elger, C.E., Lehnertz, K.: Seizure prediction: the long and winding road. Brain 130, 314 (2007)

    Google Scholar 

  21. Mookiah, M.R.K., Acharya, U.R., Lim, C.M., Petznick, A., Suri, J.S.: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl. Based Syst. 33, 73–82 (2012)

    Google Scholar 

  22. Huang, L.Q.S.J., Cheng, H.Y.: Prediction of epileptic seizures using bispectrum analysis of electroencephalograms and artificial neural network. In: Proceedings of the 25th Annual International Conference of the IEEE in Medicine and Biology Society, Mexico, pp. 2947–2949. IEEE (2003)

  23. Kiranmayi, G.R., Udayashankara, V.: Neural network classifier for the detection of epilepsy. In: International Conference on Circuits, Controls and Communications (CCUBE), pp. 1–4. IEEE (2003)

  24. Venkatakrishnan, P., Sukanesh, R., Sangeetha, S.: Detection of quadratic phase coupling from human EEG signals using higher order statistics and spectra. Signal Image Video Process. 5, 217–229 (2011)

    Google Scholar 

  25. Acharya, U.R., et al.: Analysis and automatic identification of sleep stages using higher order spectra. Int. J. Neural Syst. 20, 509–521 (2010)

    Google Scholar 

  26. Kontaxis, S., Lázaro, j., Hernando, A., Arza,A., Garzón, J.M., Gil, E., Laguna, P., Aguiló, J., Bailón, R.: Mental stress detection using cardiorespiratory wavelet cross-bispectrum. In: Computing in Cardiology Conference (CinC), pp. 725–728 (2016)

  27. Maiwald, T., Winterhalder, M., Aschenbrenner-Scheibe, R., Voss, H.U., Schulze-Bonhage, A., Timmer, J.: Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic. Physica 194, 357–368 (2004)

    MATH  Google Scholar 

  28. Ning, T., Bronzino, J.D.: Autoregressive and bispectral analysis techniques: EEG applications. IEEE Eng. Med. Biol. Mag. 2, 47–50 (1990)

    Google Scholar 

  29. Aschenbrenner Scheibe, R., Maiwald, T., Winterhalder, M., Voss, H.U., Timmer, J., Schulze-Bonhage, A.: How well can epileptic seizures be predicted: an evaluation of a nonlinear method. Brain 126, 2616–2626 (2003)

    MATH  Google Scholar 

  30. Björn, S., Winterhalder, M., Maiwald, T., Brandt, A., Schad, A., Timmer, J., Schulze-Bonhage, A.: Do false predictions of seizures depend on the state of vigilance? A report from two seizure prediction and proposed remedies. Epilepsia 48, 2058–2070 (2006)

    MATH  Google Scholar 

  31. Aarabi, A., He, B.: Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach. Clin. Neurophysiol. 125, 930–940 (2014)

    Google Scholar 

  32. Bedeeuzzamana, M., Fathimab, T., Khan, Y.U., Farooq, O.: Seizure prediction using statistical dispersion measures of intracranial lEEG. Biomed. Signal Process. Control 10, 338–341 (2014)

    Google Scholar 

  33. Mirowski, P., Madhavan, D., LeCun, Y.: Classification of patterns of EEG synchronization for seizure prediction. Classif. Patterns EEG Synchron. Seizure Predict. 120, 1927–1940 (2009)

    Google Scholar 

  34. Brown, M.J., Netoff, T., Parhi, K.K.: A low complexity seizure prediction algorithm. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1640–1643. IEEE (2011)

  35. Park, Y., Luo, L., Parhi, K.K., Netoff, T.: Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52, 1761–1770 (2011)

    Google Scholar 

  36. Soleimani, B.H., Lucas, C., Araabi, B.N., Schwabe, L.: Adaptive prediction of epileptic seizures from intracranial recordings. Biomed. Signal Process. Control 7, 456–464 (2012)

    Google Scholar 

  37. Zhang, Z., Parhi, K.K.: Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power. IEEE Trans. Biomed. Circuits Syst. 10, 693–706 (2016)

    Google Scholar 

  38. Rasekhi, J., Mollaei, M.R.K., Bandarabadi, M., Teixeira, C.A., Dourado, A.: Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods. J. Neurosci. Methods 217, 9–16 (2013)

    Google Scholar 

  39. Bandarabadi, M., Teixeira, C.A., Rasekhi, J., Dourado, A.: Epileptic seizure prediction using relative spectral power features. Clin. Neurophysiol. 126, 237–248 (2015)

    Google Scholar 

  40. Assi, E.B., Sawan, M., Nguyen, D.K., Rihana, S.: A hybrid mRMR-genetic based selection method for the prediction of epileptic seizures. In: Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2015)

  41. Moghim, N., Corne, D.W.: Predicting epileptic seizures in advance. PLoS ONE 9, 99334 (2014)

    Google Scholar 

  42. Howbert, J.J., Patterson, E.E., Stead, S.M., Brinkmann, B., et al.: Forecasting seizures in dogs with naturally occurring epilepsy. PLoS ONE 9, 81920 (2014)

    Google Scholar 

  43. Orosco, E.C., Lopez, N.M., Sciascio, F.: Bispectrum-based features classification for myoelectric control. Biomed. Signal Process. Control 8, 153–168 (2013)

    Google Scholar 

  44. Krishnan, B., Faith, A., Vlachos, I., Roth, A., Williams, K., Noe, K., Drazkowski, J., et al.: Resetting of brain dynamics: epileptic versus psychogenic nonepileptic seizures. Epilepsy Behav. 22, S74–S81 (2011)

    Google Scholar 

  45. Basumallick, N., Narasimhan, S.V.: Improved bispectrum estimation based on modified group delay. SIVP 6, 273–286 (2012)

    Google Scholar 

  46. Mahmoodian, N., Schaufler, A., Pashazadeh, A., Boese, A., Friebe, M., Illanes, A.: Proximal detection of guide wire perforation using feature extraction from bispectral audio signal analysis combined with machine learning. Comput. Biol. Med. 107, 10–17 (2019)

    Google Scholar 

  47. Nasrolahzadeh, M., Mohammadpoory, Z., Haddadnia, J.: A novel method for early diagnosis of Alzheimer’s disease based on higher-order spectral estimation of spontaneous speech signals. Cogn. Neurodyn. 10, 495–503 (2016)

    Google Scholar 

  48. Hinich, M.J., Wilson, G.R.: Time delay estimation using the cross bispectrum. IEEE Trans. Signal Process. 40, 106–113 (1992)

    Google Scholar 

  49. Karimi, D.: Spectral and bispectral analysis of awake breathing sounds for obstructive sleep apnea diagnosis. University of Manitoba, Electrical and Computer Engineering Department (2013)

  50. Chua, K.C., Chandran, V., Acharya, U.R., Lim, C.M.: Higher order spectra based support vector machine for arrhythmia classification. In: 13th International Conference on Biomedical Engineering, pp. 231–234. Springer (2009)

  51. Zgallai, W.A.: Reference-free assessment of speech intelligibility using bispectrum of an auditory neurogram. PloS ONE 11, e0150415 (2016)

    Google Scholar 

  52. Gorriz, J.M., Ramirez, J., Puntonet, C.G., Segura, J.C.: Second-and third-order statistical characterization of non-linearity and non-gaussianity of adult and fetal ECG signals and noise. In: Practical Applications in Biomedical Engineering. InTech (2013)

  53. Gorriz, J.M., Ramirez, J., Puntonet, C.G., Segura, J.C.: An efficient bispectrum phase entropy-based algorithm for VAD. In: Ninth International Conference on Spoken Language Processing (2006)

  54. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1997)

    MATH  Google Scholar 

  55. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)

    Google Scholar 

  56. Freiburg EEG database. http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eegdatabase

  57. Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., Fuggetta, F.: Real-time epileptic seizure prediction using AR models and support vector machines. IEEE Trans. Biomed. Eng. 57, 3–1124 (2010)

    Google Scholar 

  58. Lehnertz, K., Andrzejak, R.G., Arnhold, J., Kreuz, T., Mormann, F., Rieke, C., Widman, G., Elger, C.E.: Nonlinear EEG analysis in epilepsy: its possible use for interictal focus localization, seizure anticipation. J. Clin. Neurophysiol. 18, 209–222 (2001)

    Google Scholar 

  59. Iasemidis, L.D., Shiau, D.S., Pardalos, P.M., Chaovalitwongse, W., Narayanan, K., Prasad, A., Tsakalis, K., Carney, P., Sackellares, J.C.: Long-term prospective on-line real-time seizure prediction. Clin. Neurophysiol. 116, 532–544 (2005)

    Google Scholar 

  60. Gadhoumi, K., Lina, J.M., Gotman, J.: Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clin. Neurophysiol. 124, 1745–1754 (2013)

    Google Scholar 

  61. Alvarado-Rojas, C., Valderrama, M., Fouad-Ahmed, A., Feldwisch-Drentrup, H., Ihle, M., Teixeira, C.A., Sales, F., Schulze-Bonhage, A., Adam, C., Dourado, A., et al.: Slow modulations of high-frequency activity (40–140 Hz) discriminate preictal changes in human focal epilepsy. Sci. Rep. 4, 4545 (2014)

    Google Scholar 

  62. Fujiwara, K., Miyajima, M., Yamakawa, T., Abe, E., Suzuki, Y., Sawada, Y., Kano, M., Maehara, T., Sasai-Sakuma, T., et al.: Epileptic seizure prediction based on multivariate statistical process control of heart rate variability features. IEEE Trans. Biomed. Eng. 63, 1321–1332 (2016)

    Google Scholar 

  63. Khan, H., Marcuse, L., Fields, M., Swann, K., Yener, B.: Focal onset seizure prediction using convolutional networks. IEEE Trans. Biomed. Eng. 65, 2109–2118 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghmeh Mahmoodian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodian, N., Haddadnia, J., Illanes, A. et al. Seizure prediction with cross-higher-order spectral analysis of EEG signals. SIViP 14, 821–828 (2020). https://doi.org/10.1007/s11760-019-01615-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-019-01615-0

Keywords

Navigation