Skip to main content
Log in

The Response of Vegetation Biomass to Soil Properties along Degradation Gradients of Alpine Meadow at Zoige Plateau

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

Alpine grassland of the Tibetan Plateau has undergone severe degradation, even desertification. However, several questions remain to be answered, especially the response mechanisms of vegetation biomass to soil properties. In this study, an experiment on degradation gradients was conducted in an alpine meadow at the Zoige Plateau in 2017. Both vegetation characteristics and soil properties were observed during the peak season of plant growth. The classification and regression tree model (CART) and structural equation modelling (SEM) were applied to screen the main factors that govern the vegetation dynamics and explore the interaction of these screened factors. Both aboveground biomass (AGB) and belowground biomass (BGB) experienced a remarkable decrease along the degradation gradients. All soil properties experienced significant variations along the degradation gradients at the 0.05 significance level. Soil physical and chemical properties explained 54.78% of the variation in vegetation biomass along the degradation gradients. AGB was mainly influenced by soil water content (SWC), soil bulk density (SBD), soil organic carbon (SOC), soil total nitrogen (STN), and pH. Soil available nitrogen (SAN), SOC and pH, had significant influence on BGB. Most soil properties had positive effects on AGB and BGB, while SBD and pH had a slightly negative effect on AGB and BGB. The correlations of SWC with AGB and BGB were relatively less significant than those of other soil properties. Our results highlighted that the soil properties played important roles in regulating vegetation dynamics along the degradation gradients and that SWC is not the main factor limiting plant growth in the humid Zoige region. Our results can provide guidance for the restoration and improvement of degraded alpine grasslands on the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albalawi E K, Kumar L, 2013. Using remote sensing technology to detect, model and map desertification: a review. Journal of Food, Agriculture & Environment, 11(2): 791–797.

    Google Scholar 

  • Allington G R H, Valone T J, 2010. Reversal of desertification: the role of physical and chemical soil properties. Journal of Arid Environments, 74(8): 973–977. doi: https://doi.org/10.1016/j.jaridenv.2009.12.005

    Google Scholar 

  • Bai J H, Lu Q Q, Zhao Q Q et al., 2013. Effects of alpine wetland landscapes on regional climate on the zoige plateau of China. Advances in Meteorology, 2013: 972430. doi: https://doi.org/10.1155/2013/972430

    Google Scholar 

  • Bao Shidan, 2000. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 14–97. (in Chinese)

    Google Scholar 

  • Belaroui K, Djediai H, Megdad H, 2014. The influence of soil, hydrology, vegetation and climate on desertification in El-Bayadh region (Algeria). Desalination and Water Treatment, 52(10–12): 2144–2150. doi: https://doi.org/10.1080/19443994.2013.782571

    Google Scholar 

  • Berthrong S T, Jobbágy E G, Jackson R B, 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications, 19(8): 2228–2241. doi: https://doi.org/10.1890/08-1730.1

    Google Scholar 

  • Cao B, Qin Q M, Zhu L et al., 2007. Simplified desertification monitoring approach based on K-TTCT: a case study on Guyuan county, Heibei province, China. In: Proceedings of the SPIE 6790, MIPPR 2007: Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications. Wuhan, China: SPIE, 67900E. doi:https://doi.org/10.1117/12.741703

    Google Scholar 

  • Cao Y Z, Wang X D, Lu X Y et al., 2013. Soil organic carbon and nutrients along an alpine grassland transect across northern Tibet. Journal of Mountain Science, 10(4): 564–573. doi: https://doi.org/10.1007/s11629-012-2431-5

    Google Scholar 

  • Chen Jianguo, Yang Yang, Sun Hang, 2011. Advances in the studies of responses of alpine plants to global warming. Chinese Journal of Applied & Environmental Biology, 17(3): 435–446. (in Chinese)

    Google Scholar 

  • Chen Z, Jiang W G, Tang Z H et al., 2016. Spatial-temporal pattern of vegetation index change and the relationship to land surface temperature in Zoige. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI–B3: 849–852. doi: https://doi.org/10.5194/isprs-archives-XLI-B3-849-2016

    Google Scholar 

  • Coscarelli R, Minervino I, Sorriso-Valvo M, 2005. Methods for the characterization of areas sensitive to desertification: an application to the Calabrian territory (Italy). In: Proceedings of Geomorphological Processes and Human Impacts in River Basins. Catalonia, Spain: International Association of Hydrological Science Publication, 23–30.

    Google Scholar 

  • Cui X F, Graf H F, 2009. Recent land cover changes on the Tibetan Plateau: a review. Climatic Change, 94(1–2): 47–61. doi: https://doi.org/10.1007/s10584-009-9556-8

    Google Scholar 

  • De Pina Tavares J, Baptista I, Ferreira A J D et al., 2015. Assessment and mapping the sensitive areas to desertification in an insular Sahelian mountain region Case study of the Ribeira Seca Watershed, Santiago Island, Cabo Verde. CATENA, 128: 214–223. doi: https://doi.org/10.1016/j.catena.2014.10.005

    Google Scholar 

  • Dong Z B, Hu G Y, Yan C Z et al., 2010. Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai-Tibetan Plateau. Environmental Earth Sciences, 59(8): 1731–1740. doi: https://doi.org/10.1007/s12665-009-0155-9

    Google Scholar 

  • Fan H B, Wu J P, Liu W F et al., 2015. Linkages of plant and soil C: N: P stoichiometry and their relationships to forest growth in subtropical plantations. Plant and Soil, 392(1–2): 127–138. doi: https://doi.org/10.1007/s11104-015-2444-2

    Google Scholar 

  • Gao Y H, Schumann M, Zeng X Y et al., 2011. Changes of plant communities and soil properties due to degradation of alpine wetlands on the Qinghai-Tibetan Plateau. Journal of Environmental Protection and Ecology, 12(2): 788–798.

    Google Scholar 

  • Ge X D, Dong K K, Luloff A E et al., 2016. Correlation between landscape fragmentation and sandy desertification: a case study in Horqin Sandy Land, China. Environmental Monitoring and Assessment, 188(1): 62. doi: https://doi.org/10.1007/s10661-015-5039-8

    Google Scholar 

  • Hu G Y, Dong Z B, Lu J F et al., 2012. Driving forces responsible for aeolian desertification in the source region of the Yangtze River from 1975 to 2005. Environmental Earth Sciences, 66(1): 257–263. doi: https://doi.org/10.1007/s12665-011-1235-1

    Google Scholar 

  • Jobbágy E G, Jackson R B, 2003. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry, 64(2): 205–229. doi: https://doi.org/10.1023/A:1024985629259

    Google Scholar 

  • Li X J, Zhang X Z, Wu J S et al., 2011. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth Sciences, 64(7): 1911–1919. doi: https://doi.org/10.1007/s12665-011-1004-1

    Google Scholar 

  • Liu M, Liu G H, Gong L et al., 2014a. Relationships of biomass with environmental factors in the grassland area of hulunbuir, China. PLoS One, 9(7): e102344. doi: https://doi.org/10.1371/journal.pone.0102344

    Google Scholar 

  • Liu Miao, Liu Guohua, Wu Xing et al., 2014b. Vegetation traits and soil properties in response to utilization patterns of grassland in Hulun Buir City, Inner Mongolia, China. Chinese Geographical Science, 24(4): 471–478. doi: https://doi.org/10.1007/s11769-014-0706-1

    Google Scholar 

  • Lu J F, Dong Z B, Li W J et al., 2014. The effect of desertification on carbon and nitrogen status in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Earth Sciences, 71(2): 807–815. doi: https://doi.org/10.1007/s12665-013-2482-0

    Google Scholar 

  • Lü X T, Dijkstra F A, Kong D L et al., 2014. Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Scientific Reports, 4: 4817. doi: https://doi.org/10.1038/srep04817

    Google Scholar 

  • Ma Q F, Cui L J, Song H T et al., 2017. Aboveground and below-ground biomass relationships in the Zoige Peatland, Eastern Qinghai-Tibetan Plateau. Wetlands, 37(3): 461–469. doi: https://doi.org/10.1007/s13157-017-0882-8

    Google Scholar 

  • Ma W H, Yang Y H, He J S et al., 2008. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C: Life Sciences, 51(3): 263–270. doi: https://doi.org/10.1007/s11427-008-0029-5

    Google Scholar 

  • Ma Yushou, Lang Baining, Li Qingyun et al., 2002. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region. Pratacultural Science, 19(9): 1–5. (in Chinese)

    Google Scholar 

  • McConnaughay K D M, Coleman J S, 1999. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology, 80(8): 2581–2593. doi: https://doi.org/10.1890/0012-9658

    Google Scholar 

  • Mokany K, Raison R J, Prokushkin A S, 2006. Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12(1): 84–96. doi: https://doi.org/10.1111/j.1365-2486.2005.001043.x

    Google Scholar 

  • Olsen S R, Cole C V, Watanabe F S, 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington: US Government Printing Office.

    Google Scholar 

  • Pan T, Hou S, Wu S H et al., 2017. Variation of soil hydraulic properties with alpine grassland degradation in the eastern Tibetan Plateau. Hydrology and Earth System Sciences, 21(4): 2249–2261. doi: https://doi.org/10.5194/hess-21-2249-2017

    Google Scholar 

  • Patty L, Halloy S R P, Hiltbrunner E et al., 2010. Biomass allocation in herbaceous plants under grazing impact in the high Semi-Arid Andes. Flora — Morphology, Distribution, Functional Ecology of Plants, 205(10): 695–703. doi: https://doi.org/10.1016/j.flora.2009.12.039

    Google Scholar 

  • Qiu K Y, Xie Y Z, Xu D M et al., 2018. Photosynthesis-related properties are affected by desertification reversal and associated with soil N and P availability. Brazilian Journal of Botany, 41(2): 329–336. doi: https://doi.org/10.1007/s40415-018-0461-0

    Google Scholar 

  • R Development Core Team, 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.rproject.org/ The accessed date is: December 12, 2016

    Google Scholar 

  • Schlesinger W H, Reynolds J F, Cunningham G L et al., 1990. Biological feedbacks in global desertification. Science, 247(4946): 1043–1048. doi: https://doi.org/10.1126/science.247.4946.1043

    Google Scholar 

  • Shipley B, Meziane D, 2002. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16(3): 326–331. doi: https://doi.org/10.1046/j.1365-2435.2002.00626.x

    Google Scholar 

  • Strudley M W, Green T R, Ascough II J C, 2008. Tillage effects on soil hydraulic properties in space and time: state of the science. Soil and Tillage Research, 99(1): 4–48. doi: https://doi.org/10.1016/j.still.2008.01.007

    Google Scholar 

  • Sun D F, Dawson R, Li B G, 2006. Agricultural causes of desertification risk in Minqin, China. Journal of Environmental Management, 79(4): 348–356. doi: https://doi.org/10.1016/j.jenvman.2005.08.004

    Google Scholar 

  • Sun D F, Hong L, Li B G, 2008. Landscape connectivity changes analysis for monitoring desertification of Minqin county, China. Environmental Monitoring and Assessment, 140(1–3): 303–312. doi: https://doi.org/10.1007/s10661-007-9868-y

    Google Scholar 

  • Sun J, Cheng G W, Li W P, 2013. Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences, 10(3): 1707–1715. doi: https://doi.org/10.5194/bg-10-1707-2013

    Google Scholar 

  • Sun J, Wang X D, Cheng G W et al., 2014. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, northern Tibetan Plateau. PLoS One, 9(9): e108821. doi: https://doi.org/10.1371/journal.pone.0108821

    Google Scholar 

  • Sun J, Wang H M, 2016. Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands, Tibetan Plateau. Ecological Indicators, 60: 1070–1076. doi: https://doi.org/10.1016/j.ecolind.2015.08.038

    Google Scholar 

  • Sun J, Ma B B, Lu X Y, 2018. Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation & Development, 29(2): 337–348. doi: https://doi.org/10.1002/ldr.2822

    Google Scholar 

  • Sun J, Zhang Z C, Dong S K. Adaptive management of alpine grassland ecosystems over Tibetan Plateau. Pratacultural Science, 2019; 36: 1–6. doi: https://doi.org/10.11829/j.issn.1001-0629.2019-0224 (in Chinese)

    Google Scholar 

  • Traylor I R, 1988. Controlling desertification in the peoples-republic-of-China — the shapotou example. Forum of the Association for Arid Lands Studies, Vol IV: 96–100.

    Google Scholar 

  • Van Groenigen K J, Qi X, Osenberg C W et al., 2014. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science, 344(6183): 508–509. doi: https://doi.org/10.1126/science.1249534

    Google Scholar 

  • Verón S R, Paruelo J M, 2010. Desertification alters the response of vegetation to changes in precipitation. Journal of Applied Ecology, 47(6): 1233–1241. doi: https://doi.org/10.1111/j.1365-2664.2010.01883.x

    Google Scholar 

  • Wang G X, Wang Y B, Li Y S et al., 2007a. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. CATENA, 70(3): 506–514. doi: https://doi.org/10.1016/j.catena.2007.01.001

    Google Scholar 

  • Wang H, Guo Z G, Xu X H et al., 2007b. Response of vegetation and soils to desertification of alpine meadow in the upper basin of the Yellow River, China. New Zealand Journal of Agricultural Research, 50(4): 491–501. doi: https://doi.org/10.1080/00288230709510317

    Google Scholar 

  • Wang H M, Sun J, Li W P et al., 2016a. Effects of soil nutrients and climate factors on belowground biomass in an alpine meadow in the source region of the Yangtze-Yellow rivers, Tibetan Plateau of China. Journal of Arid Land, 8(6): 881–889. doi: https://doi.org/10.1007/s40333-016-0055-2

    Google Scholar 

  • Wang J Y, Li A N, Bian J H, 2016b. Simulation of the grazing effects on grassland aboveground net primary production using DNDC model combined with time-series remote sensing data-a case study in Zoige Plateau, China. Remote Sensing, 8(3): 168. doi: https://doi.org/10.3390/rs8030168

    Google Scholar 

  • Wang J L, Zhong Z M, Wang Z H et al., 2014. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai Tibetan Plateau. Acta Ecologica Sinica, 34(22): 6678–6691. (in Chinese)

    Google Scholar 

  • Wang X M, Chen F H, Dong Z B, 2006. The relative role of climatic and human factors in desertification in semiarid China. Global Environmental Change, 16(1): 48–57. doi: https://doi.org/10.1016/j.gloenvcha.2005.06.006

    Google Scholar 

  • Wang Y, Sun J, Liu M et al., 2019 Precipitation-use efficiency may explain net primary productivity allocation under different precipitation conditions across global grassland ecosystems. Global Ecology and Conservation, 20. doi: https://doi.org/10.1016/j.gecco.2019.e00713

  • Xue X, Guo J, Han B S et al., 2009. The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Geomorphology, 108(3–4): 182–190. doi: https://doi.org/10.1016/j.geomorph.2009.01.004

    Google Scholar 

  • Yan L, Zhou G S, Zhang F, 2013. Effects of different grazing intensities on grassland production in China: a meta-analysis. PLoS One, 8(12): e81466. doi: https://doi.org/10.1371/journal.pone.0081466

    Google Scholar 

  • Yang M X, Wang S L, Yao T D et al., 2004. Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau. Cold Regions Science and Technology, 39(1): 47–53. doi: https://doi.org/10.1016/j.coldregions.2004.01.002

    Google Scholar 

  • Yang Y H, Fang J Y, Ma W H et al., 2010. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 19(2): 268–277. doi: https://doi.org/10.1111/j.1466-8238.2009.00502.x

    Google Scholar 

  • Zhang F, Wang T, Xue X et al., 2010. The response of soil CO2 efflux to desertification on alpine meadow in the Qinghai-Tibet Plateau. Environmental Earth Sciences, 60(2): 349–358. doi: https://doi.org/10.1007/s12665-009-0421-x

    Google Scholar 

  • Zhang F, Zhu B Z, Zheng J et al., 2013. Soil properties as indicators of desertification in an alpine meadow ecosystem of the Qinghai-Tibet Plateau, China. Environmental Earth Sciences, 70(1): 249–258. doi: https://doi.org/10.1007/s12665-012-2120-2

    Google Scholar 

  • Zhang G S, Jiang N, Liu X L et al., 2008. Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, ‘Methanolobus psychrophilus’ sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Applied and Environmental Microbiology, 74(19): 6114–6120. doi: https://doi.org/10.1128/AEM.01146-08

    Google Scholar 

  • Zhang Z C, Hou G, Liu M, Wei T X et al., 2019. Degradation induces changes in the soil C: N: P stoichiometry of alpine steppe on the Tibetan Plateau. Journal of Mountain Science, 16(10): 2348–2360. doi: https://doi.org/10.1007/s11629-018-5346-y

    Google Scholar 

  • Zhu Y X, Qin Z H, Xu B et al., 2007. An approach for desertification monitoring in Hulun Buir grassland of Inner Mongolia, China. In: Proceedings of the SPIE 6752, Geoinformatics 2007: Remotely Sensed Data and Information. Nanjing, China: SPIE, 675223. doi:https://doi.org/10.1117/12.760762

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Sun or Ming Xu.

Additional information

Foundation item: Under the auspices of the China Postdoctoral Science Foundation (No. 2017M620889), the Second Tibetan Plateau Scientific Expedition and Research Program (No. 2019QZKK0405-05), the State Key Research Development Program of China (No. 2016YFC0501803, 2016YFC0501802)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, Z., Sun, J. et al. The Response of Vegetation Biomass to Soil Properties along Degradation Gradients of Alpine Meadow at Zoige Plateau. Chin. Geogr. Sci. 30, 446–455 (2020). https://doi.org/10.1007/s11769-020-1116-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-020-1116-1

Keywords

Navigation