Skip to main content
Log in

A method of searching fault propagation paths in mechatronic systems based on MPPS model

基于MPPS 模型的机电系统故障传播路径搜索方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In view of the structure and action behavior of mechatronic systems, a method of searching fault propagation paths called maximum-probability path search (MPPS) is proposed, aiming to determine all possible failure propagation paths with their lengths if faults occur. First, the physical structure system, function behavior, and complex network theory are integrated to define a system structural-action network (SSAN). Second, based on the concept of SSAN, two properties of nodes and edges, i.e., the topological property and reliability property, are combined to define the failure propagation property. Third, the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths. Finally, numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration (FSI) and the algorithm of Ant Colony Optimization (ACO).

摘要

为确定机电系统发生故障时所有可能的故障传播路径及其长度, 本文考虑机电系统的结构和行为, 提出了最大概率路径搜索(MPPS)模型。 首先, 基于系统的物理结构、 功能行为和复杂网络理论, 定义了系统结构-行为网络(SSAN)。 然后在 SSAN 概念的基础上, 将网络中节点和边的拓扑属性和可靠性属性进行融合, 定义 SSAN 中节点和边的故障传播属性。 其次, 结合本文提出的 MPPS 模型, 对网络中所有的故障传播路径以及路径上的节点可能失效率进行计算。 最后, 将本文提出的 MPPS 模型和函数空间迭代法 (FSI) 以及蚁群算法 (ACO) 进行对比分析, 从而验证 MPPS 模型的准确性和先进性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ISERMANN R. Mechatronic systems-innovative products with embedded control [J]. Control Engineering Practice, 2008, 16(1): 14–29. DOI: 10.1016/j.conengprac.2007. 03.010.

    Article  Google Scholar 

  2. GABBAR H A. Improved qualitative fault propagation analysis [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(3): 260–270. DOI: 10.1016/j.jlp.2007.04.010.

    Article  Google Scholar 

  3. WANG Chao-nan, XING Liu-dong, PENG Rui, PAN Zhu-sheng. Competing failure analysis in phased-mission systems with multiple functional dependence groups [J]. Reliability Engineering & System Safety, 2017, 164: 24–33. DOI: 10.1016/j.ress.2017.02.006.

    Article  Google Scholar 

  4. NEWMAN M E J. The structure and function of complex networks [J]. SIAM Review, 2003, 45(2): 167–256.

    Article  MathSciNet  MATH  Google Scholar 

  5. LI Yan-fu, SANSAVINI G, ZIO E. Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks [J]. Reliability Engineering & System Safety, 2013, 111: 195–205. DOI: 10.1016/j.ress.2012.11.002.

    Article  Google Scholar 

  6. AMRANI N B, SAINTIS L, SARSRI D, BARREAU M. Evaluating the predicted reliability of mechatronic systems: State of the art [J]. Mechanical Engineering: An International Journal, 2016, 3(2): 1–13.

    Google Scholar 

  7. SHARMA R K, SHARMA P. Qualitative and quantitative approaches to analyse reliability of a mechatronic system: A case [J]. Journal of Industrial Engineering International, 2015, 11(2): 253–268.

    Article  Google Scholar 

  8. CHOLEY J Y, MHENNI F, NGUYEN N, BAKLOUTI A. Topology-based safety analysis for safety critical CPS[J]. Procedia Computer Science, 2016, 95: 32–39. DOI: 10.1016/j.procs.2016.09.290.

    Article  Google Scholar 

  9. MI Jin-hua, LI Yan-feng, YANG Yuan-jian, PENG Wei-wen, HUANG Hong-zhong. Reliability assessment of complex electromechanical systems under epistemic uncertainty [J]. Reliability Engineering & System Safety, 2016, 152: 1–15. DOI: 10.1016/j.ress.2016.02.003.

    Article  Google Scholar 

  10. MARTIN C, GONZALEZ-PRIDA V, PÉRÈS F. Reliability assessment of a multi-redundant repairable mechatronic system [M]// Numerical Methods for Reliability and Safety Assessment. Springer International Publishing, 2015: 407–423.

    Google Scholar 

  11. LIU Xiao-feng, AN Si-qi. Failure propagation analysis of aircraft engine systems based on complex network [J]. Procedia Engineering, 2014, 80: 506–521. DOI: 10.1016/ j.proeng.2014.09.108.

    Article  Google Scholar 

  12. FANG Xin-li, YANG Qiang, YAN Wen-jun. Modeling and analysis of cascading failure in directed complex networks [J]. Safety Science, 2014, 65(3): 1–9. DOI: 10.1016/ j.ssci.2013.12.015.

    Article  Google Scholar 

  13. YUAN Hai-bin. Network topology for the application research of electrical control system fault propagation [J]. Procedia Engineering, 2011, 15: 1748–1752. DOI: 10.1016/j.proeng.2011.08.326.

    Article  Google Scholar 

  14. ROCCO C M, RAMIREZ-MARQUEZ J E. Vulnerability metrics and analysis for communities in complex networks [J]. Reliability Engineering & System Safety, 2011, 96(10): 1360–1366. DOI: 10.1016/j.ress.2011.03.001.

    Article  Google Scholar 

  15. JOHANSSON J, HASSEL H. An approach for modelling interdependent infrastructures in the context of vulnerability analysis [J]. Reliability Engineering & System Safety, 2010, 95(12): 1335–1344. DOI: 10.1016/j.ress.2010.06.010.

    Article  Google Scholar 

  16. WANG Jian-wei, RONG Li-li, ZHANG Liang, ZHANG Zhong-zhi. Attack vulnerability of scale-free networks due to cascading failures [J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(26): 6671–6678. DOI: 10.1016/ j.physa.2008.08.037.

    Article  Google Scholar 

  17. YADAV K, BISWAS R. An intelligent search path [J]. International Journal of Intelligent Systems, 2010, 25(9): 970–980. DOI: 10.1002/int.20434.

    MATH  Google Scholar 

  18. GAO Jian-min, LI Guo, GAO Zhi-yong. Fault propagation analysis for complex system based on small-world network model [C]// Reliability and Maintainability Symposium (RAMS 2008). Las Vegas, USA: RAMS, 2008: 359–364. DOI: 10.1109/RAMS.2008.4925822.

    Google Scholar 

  19. AHMAD A, RIZVI M A K, AL-LAWATI A, MOHAMMED I, MALIK A S. Development of a MATLAB tool based on graph theory for evaluating reliability of complex mechatronic systems [C]// GCC Conference and Exhibition (GCCCE 2015). Muscat, Oman: GCCCE, 2015: 1–6. DOI: 10.1109/IEEEGCC.2015. 7060067.

    Google Scholar 

  20. HETMAŃCZYK M P, ŚWIDER J. The modified graph search algorithm based on the knowledge dedicated for prediction of the state of mechatronic systems [M]// Mechatronics-Ideas for Industrial Application (AISC 2015). Switzerland, Cham: AISC, 2015: 465–472. DOI: 10.1007/ 978-3-319-10990-9_44.

    Google Scholar 

  21. YAO Jing-xiu, WU Yu-mei, LIU Bin. An optimized method for fault propagation analysis of mechatronic systems [C]// Reliability and Maintainability Symposium (RAMS 2017). Orlando, USA: RAMS, 2017: 1–6. DOI: 10.1109/RAM. 2017.7889784.

    Google Scholar 

  22. PEETERS J F W, BASTEN R J I, TINGA T. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner [J]. Reliability Engineering & System Safety, 2018, 172: 36–44. DOI: 10.1016/j.ress.2017.11.024.

    Article  Google Scholar 

  23. CONTINI S, MATUZAS V. Analysis of large fault trees based on functional decomposition [J]. Reliability engineering & System Safety, 2011, 96(3): 383–390. DOI: 10.1016/j.ress.2010.11.002.

    Article  Google Scholar 

  24. XIAO Ning-cong, HUANG Hong-Zhong, LI Yan-feng, HE Li-ping, JIN Tong-dan. Multiple failure modes analysis and weighted risk priority number evaluation in FMEA [J]. Engineering Failure Analysis, 2011, 18(4): 1162–1170. DOI: 10.1016/j.engfailanal.2011.02.004.

    Article  Google Scholar 

  25. PAPADOPOULOS Y, PARKER D, GRANTE C. Automating the failure modes and effects analysis of safety critical systems [C]// High Assurance Systems Engineering (HASE 2004). Tampa, FL, USA: HASE, 2004: 310–311. DOI: 10.1109/HASE.2004.1281774.

    Google Scholar 

  26. PRICE C J, TAYLOR N S. Automated multiple failure FMEA [J]. Reliability Engineering & System Safety, 2002, 76(1): 1–10. DOI: 10.1016/S0951-8320(01)00136- 3.

    Article  Google Scholar 

  27. NYBERG M. Failure propagation modeling for safety analysis using causal bayesian networks [C]// Control and Fault-Tolerant Systems (SysTol 2013). Nice, France: Sys Tol 2013: 91–97. DOI: 10.1109/SysTol.2013.6693936.

    Chapter  Google Scholar 

  28. WU Yun-kai, JIANG Bin, LU Ning-yun, ZHOU Yang. Bayesian network based fault prognosis via bond graph modeling of high-speed railway traction device [J]. Mathematical Problems in Engineering, 2015: Article ID 321872. DOI: 10.1155/2015/321872.

    Google Scholar 

  29. WANG Yan-hui, BI Li-feng, WANG Shu-jun, XIANG Wan-xiao. The application of dynamic Bayesian network to reliability assessment of emu traction system [J]. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2017, 19(3): 349–357. DOI: 10.17531/ein.2017.3.5.

    Article  Google Scholar 

  30. WANG Yan-hui, BI Li-feng, LIN Shuai, LI Man, SHI Hao. A complex network-based importance measure for mechatronics systems [J]. Physica A: Statistical Mechanics & Its Applications, 2017, 466: 180–198. DOI: 10.1016/ j.physa. 2016.09.006.

    Article  Google Scholar 

  31. BAE Y H, LEE S H, KIM H C, LEE B R, JANG J, LEE J. A real-time intelligent multiple fault diagnostic system [J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(5): 590–597. DOI: 10.1007/s00170-005-2614-0.

    Article  Google Scholar 

  32. GHEDINI C G, RIBEIRO C H C. Rethinking failure and attack tolerance assessment in complex networks [J]. Physica A: Statistical Mechanics and its Applications, 2011, 390(23): 4684–4691. DOI: 10.1016/j.physa.2011.07.006.

    Article  MathSciNet  Google Scholar 

  33. MOTTER A E, LAI Y C. Cascade-based attacks on complex networks [J]. Physical Review E, 2002, 66(6): 065102. DOI: 1103/PhysRevE.66.065102.

    Article  Google Scholar 

  34. SHAN He, LI Sheng, MA Hong-ru. Effect of edge removal on topological and functional robustness of complex networks [J]. Physica A: Statistical Mechanics and its Applications, 2009, 388(11): 2243–2253. DOI: 10.1016/ j.physa.2009.02.007.

    Article  Google Scholar 

  35. FAN Yang, XIAO De-yun. Progress in root cause and fault propagation analysis of large-scale industrial processes [J]. Journal of Control Science and Engineering, 2012. DOI: 10.1155/2012/478373.

    Google Scholar 

  36. HAMMER W. Handbook of system and product safety [M]. Prentice Hall, 1972.

    Google Scholar 

  37. DAI Wen-zhan, CHEN Jie. A new kind of fault propagation model and an algorithm for finding source of fault [J]. Journal of Xiamen University: Natural Science, 2001, 40(z1): 63–67. (in Chinese).

    Google Scholar 

  38. CHEN Zheng, MATTHIEU B, JULIEN L D, BENOÎT E. Survey on mechatronic engineering: A focus on design methods and product models [J]. Advanced Engineering Informatics, 2014, 28(3): 241–257. DOI: 10.1016/j.aei.2014.05.003.

    Article  Google Scholar 

  39. LIN Shuai, JIA Li-min, WANG Yan-hui, QIN Yong, LI Man. Reliability study of Bogie system of high-speed train based on complex networks theory [C]// International Conference on Electrical and Information Technologies for Rail Transportation (EITRT 2015). Berlin, Heidelberg: EITRT, 2015: 117–124. DOI: 10.1007/978-3-662-49370-0_12.

    Google Scholar 

  40. ZHANG S G. CRH2 EMU [M]. Beijing: China Railway Press, 2008. (in Chinese)

    Google Scholar 

  41. BU Ji-ling. Dynamic and structural reliability of EMU system [M]. Beijing: China Railway Press, 2009. (in Chinese)

    Google Scholar 

  42. CAMPS ECHEVARRÍA L, DE CAMPOS VELHO H F, BECCENERI J C, NETO A J D S, SANTIAGO O L. The fault diagnosis inverse problem with ant colony optimization and ant colony optimization with dispersion [J]. Applied Mathematics and Computation, 2014, 227: 687–700. DOI: 10.1016/j.amc.2013. 11.062.

    Article  MathSciNet  MATH  Google Scholar 

  43. WEN Zhi-qiang, CAI Zi-xing. Global path planning approach based on ant colony optimization algorithm [J]. Journal of Central South University of Technology, 2006, 13(6): 707–712. DOI: 10.1007/s11771−006−0018−4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Li  (李曼).

Additional information

Foundation item: Project(2017JBZ103) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yh., Li, M. & Shi, H. A method of searching fault propagation paths in mechatronic systems based on MPPS model. J. Cent. South Univ. 25, 2199–2218 (2018). https://doi.org/10.1007/s11771-018-3908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3908-3

Key words

关键词

Navigation