Skip to main content
Log in

Photocatalytic degradation of methyl orange using ZnO/TiO2 composites

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

ZnO/TiO2 composites were synthesized by using the solvothermal method and ultrasonic precipitation followed by heat treatment in order to investigate their photocatalytic degradation of methyl orange (MO) in aqueous suspension under UV irradiation. The composition and surface structure of the catalyst were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The degradation efficiencies of MO at various pH values were obtained. The highest degradation efficiencies were obtained before 30 min and after 60 min at pH 11.0 and pH 2.0, respectively. A sample analysis was conducted using liquid chromatography coupled with electrospray ionization ion-trap mass spectrometry. Six intermediates were found during the photocatalytic degradation process of quinonoid MO. The degradation pathway of quinonoid MO was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pinheiro H M, Touraud E, Thomas O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigment, 2004, 61: 121–139

    Article  CAS  Google Scholar 

  2. Gong R M, Li M, Yang C, Sun Y Z, Chen J. Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J Hazard Mater B, 2005, 121: 247–250

    Article  CAS  Google Scholar 

  3. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol, 2001, 77: 247–255

    Article  CAS  Google Scholar 

  4. Bianco-Prevot A, Basso A, Baiocchi C, Pazzi M, Marci G, Augugliaro V, Palmisano L, Pramauro E. Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye. Anal Bioanal Chem, 2004, 378: 214–220

    Article  CAS  Google Scholar 

  5. Kansal S K, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater, 2007, 141: 581–590

    Article  CAS  Google Scholar 

  6. Liu Y, Chen X, Li J, Burda C. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 2005, 61: 11–18

    Article  CAS  Google Scholar 

  7. Kostedt IVWL, Ismail A A, Mazyck DW. Impact of heat treatment and composition of ZnO-TiO2 nanoparticles for photocatalytic oxidation of an azo dye. Ind Eng Chem Res, 2008, 47: 1483–1487

    Article  CAS  Google Scholar 

  8. Yu X D, Wu Q Y, Jiang S C, Guo Y H. Nanoscale ZnS/TiO2 composites: preparation, characterization, and visible-light photocatalytic activity. Mater Charact, 2006, 57: 333–341

    Article  CAS  Google Scholar 

  9. Rachel A, Subrahmanyam M, Boule P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl Catal B: Environ, 2002, 37: 301–308

    Article  CAS  Google Scholar 

  10. Shephard G S, Stochenström S, Villiers D D, Engelbrecht W J, Wessels G F S. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Res, 2002, 36: 140–146

    Article  CAS  Google Scholar 

  11. Stokke J M, Mazyck D W, Wu C Y, Sheahan R. Photocatalytic oxidation of methanol using silica-titania composites in a packedbed reactor. Environ Prog, 2006, 25: 312–318

    Article  CAS  Google Scholar 

  12. Ansorgova D, Holcapek M, Jandera P. Ion-pairing high-performance liquid chromatography-mass spectrometry of impurities and reduction products of sulphonated azo dyes. J Sep Sci, 2003, 26: 1011–1027

    Article  Google Scholar 

  13. Gosetti F, Gianotti V, Polati S, Gennaro M C. HPLC-MS degradation study of E110 Sunset Yellow FCF in a commercial beverage. J Chromatogr A, 2005, 1090: 107–115

    Article  CAS  Google Scholar 

  14. Liao D L, Badour C A, Liao B Q. Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. J Photochem Photobio A: Chem, 2008, 194: 11–19

    Article  CAS  Google Scholar 

  15. Yang S G, Quan X, Li X Y, Liu Y Z, Chen S, Chen G H. Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2 O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation. Phys Chem Chem Phys, 2004, 6: 659–664

    CAS  Google Scholar 

  16. Chen S F, Zhao W, Liu W, Zhang S J. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-ZnO/n-TiO2. Appl Surf Sci, 2008, 255: 2478–2484

    Article  CAS  Google Scholar 

  17. Evgenidou E, Fytianos K, Poulios I. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B: Environ, 2005, 59: 81–89

    Article  CAS  Google Scholar 

  18. Tang W Z, An H R. Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution. Chemosphere, 1995, 31: 4171–4183

    Article  CAS  Google Scholar 

  19. Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: Chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobio A: Chem, 1995, 85: 247–252

    Article  CAS  Google Scholar 

  20. Sukharev V, Kershaw R. Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water. J Photochem Photobio A: Chem, 1996, 98: 165–169

    Article  CAS  Google Scholar 

  21. So C M, Cheng M Y, Yu J C, Wong P K. Degradation of azo dye procion Red MX-5B by photocatalytic oxidation. Chemosphere, 2002, 46: 905–912

    Article  CAS  Google Scholar 

  22. Hu C, Tang Y H, Jiang Z, Hao Z P, Tang H X, Wong P K. Characterization and photocatalytic activity of noble-metalsupported surface TiO2/SiO2. Appl Catal A, 2003, 253: 389–396

    Article  CAS  Google Scholar 

  23. Kostedt IV W L, Drwiega J, Mazyck D W, Lee S W, Sigmund W, Wu C Y, Chadik P. Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutions. Environ Sci Technol, 2005, 39: 8052–8056

    Article  CAS  Google Scholar 

  24. Hasnat M A, Agrios A G, Gray K A, Rajh T, Thurnauer M C. Explaining the enhanced photocatalytic activity of Degussa P25 mixedphase TiO2 using EPR. J Phys Chem B, 2003, 107: 4545–4549

    Article  Google Scholar 

  25. Zhu C M, Wang L Y, Kong L R, Yang X, Wang L S, Zheng S J, Chen F L, Feng M Z, Zong H. Photocatalytic degradation of azo dyes by supports TiO2+ UV in aqueous solution. Chemosphere, 2000, 41: 303–309

    Article  CAS  Google Scholar 

  26. Parks G A. The isoelectric points of solids oxides, solid hydroxides, and aqueous hydroxo complex system. Chem Rev, 1965, 65: 177–198

    Article  CAS  Google Scholar 

  27. Wang Y B, Hong C S. Effect of hydrogen peroxide, periodate and persulfate on photocatalysis of 2-chlorobiphenyl in aqueous TiO2 suspensions. Water Res, 1999, 33: 2031–2036

    Article  CAS  Google Scholar 

  28. Rafols C, Barcelo D. Determination of mono- and disulphonated azo dyes by liquid chromatography-atmospheric pressure ionization mass spectrometry. J Chromatogr A, 1997, 777: 177–192

    Article  CAS  Google Scholar 

  29. Augugliaro V, Baiocchi C, Bianco-Prevot A, Lopez E G, Loddo V, Malato S, Marci G, Palmisano L, Pazzi M, Pramauro E. Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere, 2002, 49: 1223–1230

    Article  CAS  Google Scholar 

  30. Baiocchi C, Brussino M C, Pramauro E, Bianco-Prevot A, Palmisano L, Marci G. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int J Mass Spectrom, 2002, 214: 247–256

    Article  CAS  Google Scholar 

  31. Bianco-Prevot A, Basso A, Baiocchi C, Pazzi M, Marci G, Augugliaro V, Palmisano L, Pramauro E. Analytical control of photocatalytic treatments: Degradation of a sulfonated azo dye. Anal Bioanal Chem, 2004, 378: 214–220

    Article  CAS  Google Scholar 

  32. Dai K, Chen H, Peng T Y, Ke D N, Yi H B. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere, 2007, 69: 1361–1367

    Article  CAS  Google Scholar 

  33. Sabljic A, Peijnenburg W. Recommendations on modeling lifetime and degradability of organic compounds in air, soil and water systems. Pure Appl Chem, 2001, 73: 1331–1348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, M., Guo, C., Zhu, X. et al. Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Front. Environ. Sci. Eng. China 3, 271–280 (2009). https://doi.org/10.1007/s11783-009-0035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-009-0035-2

Keywords

Navigation