Skip to main content
Log in

A Quadratic Clipping Step with Superquadratic Convergence for Bivariate Polynomial Systems

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

A new numerical approach to compute all real roots of a system of two bivariate polynomial equations over a given box is described. Using the Bernstein–Bézier representation, we compute the best linear approximant and the best quadratic approximant of the two polynomials with respect to the L 2 norm. Using these approximations and bounds on the approximation errors, we obtain a fat line bounding the zero set first of the first polynomial and a fat conic bounding the zero set of the second polynomial. By intersecting these fat curves, which requires solely the solution of linear and quadratic equations, we derive a reduced subbox enclosing the roots. This algorithm is combined with splitting steps, in order to isolate the roots. It is applied iteratively until a certain accuracy is obtained. Using a suitable preprocessing step, we prove that the convergence rate is 3 for single roots. In addition, experimental results indicate that the convergence rate is superlinear (1.5) for double roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoň M., Jüttler B.: Computing roots of polynomials by quadratic clipping. Comput. Aided Geom. Des. 24, 125–141 (2007)

    Article  MATH  Google Scholar 

  2. Bartoň, M. and Jüttler, B.: Computing roots of systems of polynomials by linear clipping. Technical Report 2007-18, SFB F013 Technical Report. http://www.sfb013.uni-linz.ac.at (2007)

  3. Elber, G. and Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: The sixth ACM/IEEE symposium on solid modeling and applications, pp. 1–10. Ann Arbor (2001)

  4. Elkadi M., Mourrain B.: Symbolic-numeric methods for solving polynomial equations and applications. In: Dickenstein, A., Emiris, I.Z. (eds) Solving Polynomial Equations, Algorithms and Computation in Mathematics, vol. 14, pp. 125–168. Springer, Berlin (2004)

    Google Scholar 

  5. Farouki R.T., Goodman T.N.T.: On the optimal stability of the Bernstein basis. Math. Comput. 65, 1553–1566 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Faugère J.-C.: A new efficient algorithm for computing Gröbner bases (F 4). J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 75–83. ACM, New York (2002)

  8. Garloff J., Smith A.P.: Investigation of a subdivision based algorithm for solving systems of polynomial equations. Nonlinear Anal. 47, 167–178 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giusti M., Lecerf G., Salvy B., Yakoubsohn J.-C.: On location and approximation of clusters of zeros: Case of embedding dimension one. Found. Comput. Math. 7, 1–58 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoschek J., Lasser D.: Fundamentals of Computer Aided Geometric Design. AK Peters, Wellesley (1993)

    MATH  Google Scholar 

  11. Ko, K.H., Sakkalis, T., Patrikalakis, N.M.: Nonlinear polynomial systems: multiple roots and their multiplicities. In: Proceedings of shape modeling international (SMI), pp. 87–98. IEEE Computer Society (2004)

  12. Lecerf G.: Quadratic Newton iteration for systems with multiplicity. Found. Comput. Math. 2, 247–293 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leykin A., Verschelde J., Zhao A.: Higher-order deflation for polynomial systems with isolated singular solutions. In: Dickenstein, A., Schreyer, F.-O., Sommese, A.J. (eds) Algorithms in Algebraic Geometry, Mathematics and its Applications, vol. 146, pp. 79–97. IMA and Springer, New York (2008)

    Google Scholar 

  14. Lutterkort D., Peters J.: Optimized refinable enclosures of multivariate polynomial pieces. Comput. Aided Geom. Des. 18, 851–863 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mainar E., Peña J.M.: Evaluation algorithms for multivariate polynomials in Bernstein–Bézier form. J. Approx. Theory 143, 44–61 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mantzaflaris, A., Mourrain, B.: Deflation and certified isolation of singular zeros of polynomial systems. In: Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 249–256. ACM, New York (2011)

  17. Mantzaflaris A., Mourrain B., Tsigaridas E.: On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers. Theor. Comput. Sci. 412, 2312–2330 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mourrain B., Pavone J.P.: Subdivision methods for solving polynomial equations. J. Symb. Comput. 44, 292–306 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mourrain, B., Rouillier, F., Roy, M.-F.: The Bernstein basis and real root isolation. In: Combinatorial and Computational Geometry, of Math. Sci. Res. Inst. Publ., vol. 52, pp. 459–478. Cambridge University Press, Cambridge (2005)

  20. Nishita T., Sederberg T., Kakimoto M.: Ray tracing trimmed rational surface patches. Comput. Graph. 24, 337–345 (1990)

    Article  Google Scholar 

  21. Ojika T., Watanabe S., Mitsui T.: Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl. 96, 463–479 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pope S.R., Szanto A.: Nearest multivariate system with given root multiplicities. J. Symb. Comput. 44, 606–625 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Prautzsch H., Boehm W., Paluszny M.: Bézier and B-Spline Techniques. Springer, Berlin (2002)

    MATH  Google Scholar 

  24. Rouillier F.: Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Eng. Commun. Comput. 9, 433–461 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rouillier F., Zimmermann P.: Efficient isolation of polynomial’s real roots. J. Comput. Appl. Math. 162, 33–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rump S., Graillat S.: Verified error bounds for multiple roots of systems of nonlinear equations. Numer. Algorithms 54, 359–377 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sharma V.: Complexity of real root isolation using continued fractions. Theor. Comput. Sci. 409, 292–310 (2008)

    Article  MATH  Google Scholar 

  28. Sherbrooke E.C., Patrikalakis Nicholas M.: Computation of the solutions of non-linear polynomial systems. Comput. Aided Geom. Des. 10, 379–405 (1993)

    Article  MATH  Google Scholar 

  29. Tsigaridas E.P., Emiris I.Z.: On the complexity of real root isolation using continued fractions. Theor. Comput. Sci. 392, 158–173 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wu X., Zhi L.: Determining singular solutions of polynomial systems via symbolic-numeric reduction to geometric involutive form. J. Symb. Comput. 27, 104–122 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Jüttler.

Additional information

B. Jüttler was supported through the Austrian Science Fund (FWF), DK W1214. B. Moore was supported by the Austrian Science Fund (FWF) under the SFB grant F1303 and the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jüttler, B., Moore, B. A Quadratic Clipping Step with Superquadratic Convergence for Bivariate Polynomial Systems. Math.Comput.Sci. 5, 223–235 (2011). https://doi.org/10.1007/s11786-011-0091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-011-0091-4

Keywords

Mathematics Subject Classification (2000)

Navigation