Skip to main content

Advertisement

Log in

Fe/N/C catalysts systhesized using graphene aerogel for electrocatalytic oxygen reduction reaction in an acidic condition

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Graphene aerogel was modified with polyaniline and Fe precursors to produce Fe/N/C catalysts for electrocatalytic oxygen reduction reaction in the acidic condition. The graphene aerogel was produced by a simple hydrothermal treatment of graphene oxide dispersion with a high surface area. Aniline was polymerized with the graphene aerogel powder, and the pyrolysis of the resulting material with FeCl3 produced Fe/N/C catalyst. The loading amount on the electrode and the catalyst ink concentration was carefully selected to avoid the mass transfer limitation inside the catalyst layer. The pyrolysis temperature affected the states of nitrogen sites on the catalyst; the sample prepared at 900 °C presented the highest mass activity. The sulfur was also doped with various amounts of FeSO4 with enhanced mass activity of up to 2.1 mA/mg at 0.8 V in 0.5 M H2SO4 solution. Its durability was also tested by repeating cyclic voltammetry in a range of 0.6–1.1 V 5000 cycles. This graphene-aerogel-based carbon catalysts showed improved activity and durability for the oxygen reduction reaction in the acidic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Damjanovic, M. A. Genshaw and J.O. M. Bockris, J. Chem. Phys., 45, 4057 (1966).

    Article  CAS  Google Scholar 

  2. B. Wang, J. Power Sources, 152, 1 (2005).

    Article  CAS  Google Scholar 

  3. R. Jasinski, Nature, 201, 1212 (1964).

    Article  CAS  Google Scholar 

  4. M. Lefevre, E. Proietti, F. Jaouen and J. P. Dodelet, Science, 324, 71 (2009).

    Article  CAS  Google Scholar 

  5. H.W. Liang, W. Wei, Z.S. Wu, X.L. Feng and K. Mullen, J. Am. Chem. Soc., 135, 16002 (2013).

    Article  CAS  Google Scholar 

  6. G. Wu, K. L. More, C. M. Johnston and P. Zelenay, Science, 332, 443 (2011).

    Article  CAS  Google Scholar 

  7. S. Kattel, P. Atanassov and B. Kiefer, Phys. Chem. Chem. Phys., 15, 148 (2013).

    Article  CAS  Google Scholar 

  8. B. Jeong, D. Shin, H. Jeon, J.D. Ocon, B. S. Mun, J. Baik, H. J. Shin and J. Lee, ChemSusChem, 7, 1289 (2014).

    Article  CAS  Google Scholar 

  9. S. Yasuda, L. Yu, J. Kim and K. Murakoshi, Chem. Commun., 49, 9627 (2013).

    Article  CAS  Google Scholar 

  10. W. P. Ouyang, D.R. Zeng, X. Yu, F.Y. Xie, W. H. Zhang, J. Chen, J. Yan, F. J. Xie, L. Wang, H. Meng and D. S. Yuan, Int. J. Hydrogen Energy, 39, 15996 (2014).

    Article  CAS  Google Scholar 

  11. U. Tylus, Q.Y. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov and S. Mukerjee, J. Phys. Chem. C, 118, 8999 (2014).

    Article  CAS  Google Scholar 

  12. A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda and F. Jaouen, Nat. Mater., 14, 937 (2015).

    Article  CAS  Google Scholar 

  13. A. Muthukrishnan, Y. Nabae, T. Okajima and T. Ohsaka, ACS Catal., 5, 5194 (2015).

    Article  CAS  Google Scholar 

  14. Y.G. Li, W. Zhou, H. L. Wang, L. M. Xie, Y.Y. Liang, F. Wei, J.C. Idrobo, S. J. Pennycook and H. J. Dai, Nat. Nanotechnol., 7, 394 (2012).

    Article  CAS  Google Scholar 

  15. J.Y. Cheon, T. Kim, Y. Choi, H.Y. Jeong, M. G. Kim, Y. J. Sa, J. Kim, Z. Lee, T. H. Yang, K. Kwon, O. Terasaki, G. G. Park, R.R. Adzic and S. H. Joo, Sci. Rep., 3 (2013).

    Google Scholar 

  16. L.T. Le, M. H. Ervin, H.W. Qiu, B. E. Fuchs and W.Y. Lee, Electrochem. Commun., 13, 355 (2011).

    Article  CAS  Google Scholar 

  17. M.D. Stoller, S. J. Park, Y.W. Zhu, J. H. An and R. S. Ruoff, Nano Lett., 8, 3498 (2008).

    Article  CAS  Google Scholar 

  18. D.W. Wang, Y.G. Min, Y.H. Yu and B. Peng, J. Colloid Interface Sci., 417, 270 (2014).

    Article  CAS  Google Scholar 

  19. M. H. Liang and L. J. Zhi, J. Mater. Chem., 19, 5871 (2009).

    Article  CAS  Google Scholar 

  20. M. Pumera, Energy Environ. Sci., 4, 668 (2011).

    Article  CAS  Google Scholar 

  21. C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen and G. N. Chen, Angew. Chem. Int. Ed., 48, 4785 (2009).

    Article  CAS  Google Scholar 

  22. F. Schedin, A. K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 6, 652 (2007).

    Article  CAS  Google Scholar 

  23. H.W. Hu, J. H. Xin, H. Hu, X.W. Wang and Y.Y. Kong, Appl. Catal. A, 492, 1 (2015).

    Article  CAS  Google Scholar 

  24. Y.C. Si and E.T. Samulski, Chem. Mater., 20, 6792 (2008).

    Article  CAS  Google Scholar 

  25. J. Yan, T. Wei, B. Shao, F.Q. Ma, Z. J. Fan, M.L. Zhang, C. Zheng, Y.C. Shang, W. Z. Qian and F. Wei, Carbon, 48, 1731 (2010).

    Article  CAS  Google Scholar 

  26. M.W. Chung, C. H. Choi, S.Y. Lee and S. I. Woo, Nano Energy, 11, 526 (2015).

    Article  CAS  Google Scholar 

  27. C. Li and G.Q. Shi, Adv. Mater., 26, 3992 (2014).

    Article  CAS  Google Scholar 

  28. L. L. Jiang and Z. J. Fan, Nanoscale, 6, 1922 (2014).

    Article  CAS  Google Scholar 

  29. S. Han, D.Q. Wu, S. Li, F. Zhang and X. L. Feng, Adv. Mater., 26, 849 (2014).

    Article  CAS  Google Scholar 

  30. C. Li and G.Q. Shi, Nanoscale, 4, 5549 (2012).

    Article  CAS  Google Scholar 

  31. V. Chabot, D. Higgins, A. P. Yu, X. C. Xiao, Z.W. Chen and J. J. Zhang, Energy Environ. Sci., 7, 1564 (2014).

    Article  CAS  Google Scholar 

  32. X.D. Huang, K. Qian, J. Yang, J. Zhang, L. Li, C.Z. Yu and D.Y. Zhao, Adv. Mater., 24, 4419 (2012).

    Article  CAS  Google Scholar 

  33. Y.X. Xu, K.X. Sheng, C. Li and G.Q. Shi, ACS Nano, 4, 4324 (2010).

    Article  CAS  Google Scholar 

  34. D. Ghosh, S. Giri, A. Mandal and C. K. Das, Appl. Surf. Sci., 276, 120 (2013).

    Article  CAS  Google Scholar 

  35. C.M.S. Izumi, V.R.L. Constantino, A.M.C. Ferreira and M. L.A. Temperini, Synth. Met., 156, 654 (2006).

    Article  CAS  Google Scholar 

  36. G. Wu, C. Zhongwei, A. Kateryna, H. G. Fernando and P. Zelenay, ECS Trans., 16, 159 (2008).

    Article  CAS  Google Scholar 

  37. D.C. Marcano, D.V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010).

    Article  CAS  Google Scholar 

  38. C. H. Choi, H. K. Lim, M.W. Chung, J. C. Park, H. Shin, H. Kim and S. I. Woo, J. Am. Chem. Soc., 136, 9070 (2014).

    Article  CAS  Google Scholar 

  39. J. Liang, Y. Jiao, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 51, 11496 (2012).

    Article  CAS  Google Scholar 

  40. L. P. Zhang and Z.H. Xia, J. Phys. Chem. C, 115, 11170 (2011).

    Article  CAS  Google Scholar 

  41. C. H. Choi, C. Baldizzone, J. P. Grote, A. K. Schuppert, F. Jaouen and K. J. J. Mayrhofer, Angew. Chem. Int. Ed., 54, 12753 (2015).

    Article  CAS  Google Scholar 

  42. X. J. Zhou, Z.Y. Bai, M. J. Wu, J. L. Qiao and Z.W. Chen, J. Mater. Chem. A, 3, 3343 (2015).

    Article  CAS  Google Scholar 

  43. A.H.A.M. Videla, S. Ban, S. Specchia, L. Zhang and J. J. Zhang, Carbon, 76, 386 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, CW., Lee, H. Fe/N/C catalysts systhesized using graphene aerogel for electrocatalytic oxygen reduction reaction in an acidic condition. Korean J. Chem. Eng. 33, 2582–2588 (2016). https://doi.org/10.1007/s11814-016-0113-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0113-7

Keywords

Navigation