Skip to main content
Log in

Adsorption performance and mechanism investigation of Mn2+ by facile synthesized ceramsites from lime mud and coal fly ash

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To efficiently control manganese pollution, two kinds of ceramsites with pH self-adjustment ability, being synthesized from lime mud and coal fly ash, were employed to remove Mn2+ from aqueous solutions. The influence of different parameters like contact time, concentration of Mn2+ and pH on adsorption performance was examined. Also, the mechanism of Mn2+ removal by the ceramsites was investigated thoroughly. The results showed that the maximum Mn2+ adsorption capacity of ceramsites was 2.54±0.03 mg/g and the time required to reach equilibrium was about 4h. The pseudo-second-order kinetic model and the Langmuir model could better describe the adsorption kinetic experimental data and isotherms process, respectively. During the adsorption process of Mn2+, pH self-adjustment ability of ceramsites played a leading role in creating an alkaline environment to form precipitation MnO(OH)2, which was subsequently adsorbed onto the surface of the ceramsites. This study suggests ceramsites with pH self-adjustment ability have enormous potential in the application for removing Mn2+ from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Beukes, E. P. W. Nicolas, Swindell and H. Wabo, Episodes, 39, 285 (2016).

    Article  Google Scholar 

  2. M. Z. Ahsan, M. A. Islam and F. A. Khan, Results Phys., 19, 103402 (2020).

    Article  Google Scholar 

  3. M. D. Drahus, P. Jackes and E. Erdem, Phys. Rev. B, 84, 064113 (2011).

    Article  Google Scholar 

  4. G. Hils, A. Newirkowez and M. Kroker, Steel Res. Int., 86, 411 (2015).

    Article  CAS  Google Scholar 

  5. Y. Shao, Resour. Conserv. Recycl., 117, 25 (2017).

    Article  Google Scholar 

  6. B. Saravanakumar, X. S. Wang, W. G. Zhang, L. D. Xing and W. S. Li, Chem. Eng. J., 373, 547 (2019).

    Article  CAS  Google Scholar 

  7. W. P. Weiss and M. T. Socha, J. Anim. Sci., 82, 118 (2004).

    Article  Google Scholar 

  8. J. W. Spears, Biol. Trace Elem. Res., 188, 35 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. D. C. Oliveira, A. Nogueira-Pedro and E. W. Santos, Nutr. Res. Rev., 31, 267 (2019).

    Article  Google Scholar 

  10. M. Kim, E. Kim and M. Choi, Trace Elem. Electrolytes, 30, 51 (2013).

    Article  CAS  Google Scholar 

  11. J. Shu, H. Wu, M. Chen, H. Peng, B. Li, R. Liu, Z. Liu, B. Wang, T. Huang and Z. Hu, Water Res., 153, 229 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. M. Cersosimo and W. Koller, Neurotoxicology, 27, 340 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Y. Wang, J. Xue, S. Q. Cheng, Y. B. Ding, J. L. He, X. Q. Liu, X. M. Chen, Y. X. Wang, X. Y. Feng and Y. Y. Xia, Int. J. Occup. Med. Environ. Health, 25, 501 (2012).

    Article  PubMed  Google Scholar 

  14. Y. Wang, R. Dong and Y. Z. Zhou, Sci. Total Environ., 679, 346 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. G. I. E. Ekosse, P. S. Fouche and B. Mashatola, Int. J. Environ. Sci. Technol., 3, 15 (2006).

    Article  CAS  Google Scholar 

  16. N. Marsidi, H. Abu Hasan and S. R. S. Abdullah, J. Water Process Eng., 23, 1 (2018).

    Article  Google Scholar 

  17. F. M. Pellera, A. Giannis, D. Kalderis, K. Anastasiadou, R. Stegmann, J. Y. Wang and E. Gidarakos, J. Enviorn. Manage., 96, 35 (2012).

    Article  CAS  Google Scholar 

  18. M. Sasmaz, E. Öbek and A. Sasmaz, Appl. Geochem., 100, 287 (2019).

    Article  CAS  Google Scholar 

  19. S. Fabiana, G. Marianela, N. Cintia, M. Cecilia and S. Karim, J. Environ. Chem. Eng., 3, 253 (2015).

    Article  Google Scholar 

  20. S. Yang, D. Zhang and H. Cheng, Anal. Chim. Acta, 1074, 54 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. C. C. Kan, M. C. Aganon and C. M. Futalan, J. Environ. Sci.-China, 25, 1483 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Q. M. Zhang, C. Ma, R. J. Xiang, Z. Liu and C. Chen, Nonferr. Met. Sci. Eng. (In Chinese), 5, 95 (2014).

    CAS  Google Scholar 

  23. GB 8979–1996, Integrated Wastewater Discharge Standard, (In Chinese) (1996).

  24. X. Tian, R. F. Zhang and T. L. Huang, J. Environ. Sci.-China, 77, 346 (2019).

    Article  PubMed  Google Scholar 

  25. L. C. Ferreira, L. C. Ferreira, V. L. Cardoso and U. Coutinho, J. Water Process Eng., 29, 100792 (2019).

    Article  Google Scholar 

  26. Y. C. Zhang S. Z. Ni and X. J. Wang, Chem. Eng. J., 372, 82 (2019).

    Article  CAS  Google Scholar 

  27. C. C. Kan, M. C. Aganon, C. M. Futalan and M. L. P. Dalida, J. Environ. Sci.-China, 25, 1483 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. J. P. Vistuba, M. E. Nagel-Hassemer and F. R. Lapolli, Environ. Technol., 34, 275 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. M. A. Islam, D. W. Morton, B. B. Johnson and B. Mainali, J. Water Process Eng., 26, 264 (2018).

    Article  Google Scholar 

  30. http://www.chinappi.org/reps/20190508092527140869.html, (In Chinese) (Accessed October 27th 2020).

  31. J. Cheng, J. H. Zhou and J. Z. Liu, Energy Fuels, 23, 2506 (2009).

    Article  CAS  Google Scholar 

  32. F. M. Martins, J. M. Martins, L. C. Ferracin and C. J. da Cunha, J. Hazard. Mater., 147, 610 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. J. Qin, C. Cui, C. M. Yang, X. Y. Cui, B. Hu and J. T. Huang, J. Clean Prod., 113, 355 (2016).

    Article  CAS  Google Scholar 

  34. J. Qin, C. Cui, X. Y. Cui, H. Ahmad and C. M. Yang, Constr. Build. Mater., 95, 10 (2015).

    Article  Google Scholar 

  35. J. Qin, C. M. Yang, C. Cui, J. T. Huang, H. Ahmad and H. L. Ma, J. Environ. Sci.-China, 47, 91 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. J. X. Dong, Y. H. Wang, L. J. Wang, S. J. Wang, S. J. Li and Y. Ding, J. Water Process Eng., 34, 101 (2020).

    Article  Google Scholar 

  37. J. L. Wang, Y. L. Zhao, P. P. Zhang, L. Q. Yang, H. A. Xu and G. P. Xi, Chin. J. Chem. Eng., 26, 96 (2018).

    Article  CAS  Google Scholar 

  38. Q. X. Jing, Y. Y. Wang, L. Y. Chai, C. J. Tang, X. D. Huang, H. Guo, W. Wang and W. You, Trans. Nonferrous Met. Soc. China, 28, 1053 (2018).

    Article  CAS  Google Scholar 

  39. ASTM C-20, Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water (2010).

  40. BS EN 13055, Lightweight Aggregates (2016).

  41. ISO 18754, Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics) — Determination of Density and Apparent Porosity (2020).

  42. BS EN 12457-2, Characterisation of Waste — Compliance Test for Leaching of Granular Waste Materials and Sludges — Part 2 (2002).

  43. S. H. Liang, J. T. Chen, M. X. Guo, D. L. Feng, L. Liu and T. Qi, Waste Manage., 105, 425 (2020).

    Article  CAS  Google Scholar 

  44. J. Kim and C. Vipulanandan, Cem. Concr. Res., 33, 621 (2003).

    Article  CAS  Google Scholar 

  45. H. Choi, N. C. Woo, M. Jiang, F. S. Cannon and S. A. Snyder, Sep. Purif. Technol., 136, 184 (2014).

    Article  CAS  Google Scholar 

  46. X. Y. Zhang, J. Zhou, Y. B. Fan and J. Y. Liu, Korean J. Chem. Eng., 37, 1445 (2020).

    Article  CAS  Google Scholar 

  47. Y. Cheng, W. Y. Xiong and T. L. Huang, Sci. Total Environ., 737, 139525 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. S. Bandar, M. Anbia and S. Salehi, J. Alloys Compd., 851, 156822 (2021).

    Article  CAS  Google Scholar 

  49. L. Y. Duan, X. D. Hu, D. S. Sun, Y. Z. Liu, Q. J. Guo, T. K. Zhang and B. T. Zhang, Korean J. Chem. Eng., 37, 1166 (2020).

    Article  CAS  Google Scholar 

  50. Z. Sareban and V. Javanbakht, Korean J. Chem. Eng., 34, 2886 (2017).

    Article  CAS  Google Scholar 

  51. S. Suresh, K. Kante, E. H. Fini and T. J. Bandosz, Micropor. Mesopor. Mater., 286, 155 (2019).

    Article  CAS  Google Scholar 

  52. Y. J. Shao, B. Ren, H. M. Jiang, B. J. Zhou, L. P. LV, J. Z. Ren, L. C. Dong, J. Li and Z. F. Liu, J. Hazard. Mater., 333, 222 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. J. L. Zou, G. R. Xu and G. B. Li, J. Hazard. Mater., 165, 995 (2019).

    Article  Google Scholar 

  54. 40 CFR 261.24 — Toxicity Characteristics (2011).

  55. GB 5085.3-2007, Identification Standard for Hazardous Wastes — Identification for Extraction Toxicity (2007).

  56. H. Y. Hu, H. Liu, W. Q. Shen, G. Q. Luo, A. J. Li, Z. L. Lu and H. Yao, Chemosphere, 93, 590 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. T. W. Cheng and Y. S. Chen, Chemosphere, 51, 817 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Y. Yang, Y. Xiao, N. Wilson and J. H. L. Voncken, J. Hazard. Mater., 166, 567 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Z. Aksu and I. A. Isoglu, Process Biochem., 40, 3031 (2005).

    Article  CAS  Google Scholar 

  60. A. M. Zayed, A. Q. Selim, E. A. Mohamed, M. S. M. A. Wahed, M. K. Seliem and M. Sillanpaa, Appl. Clay Sci., 140, 17 (2017).

    Article  CAS  Google Scholar 

  61. Z. C. Ma and Y. B. Xie, Chem. Res. Appl. (In Chinese), 13, 417 (2001).

    CAS  Google Scholar 

  62. https://www.dowater.com/Tech/2019-10-21/1082324.html, (In Chinese) (Accessed October 27th 2020).

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51802162 and 51708302), Natural Science Foundation of Jiangsu Province (No.BK20180955) and Nature Science Foundation of Jiangsu Higher Education Institution of China (No.17KJB610008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Qin.

Additional information

Disclosure Statement

The authors declare that they have no conflict of interest.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_706_MOESM1_ESM.pdf

Adsorption performance and mechanism investigation of Mn2+ by facile synthesized ceramsites from lime mud and coal fly ash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, C., Dai, S., Li, S. et al. Adsorption performance and mechanism investigation of Mn2+ by facile synthesized ceramsites from lime mud and coal fly ash. Korean J. Chem. Eng. 38, 505–513 (2021). https://doi.org/10.1007/s11814-020-0706-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0706-z

Keywords

Navigation