Skip to main content
Log in

Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Within their natural habitat, crops are often subjected to drought and heat stress, which suppress crop growth and decrease crop production. Causing overaccumulation of glycinebetaine (GB) has been used to enhance the crop yield under stress. Here, we investigated the response of wheat (Triticum aestivum L.) photosynthesis to drought, heat stress and their combination with a transgenic wheat line (T6) overaccumulating GB and its wild-type (WT) Shi4185. Drought stress (DS) was imposed by controlling irrigation until the relative water content (RWC) of the flag leaves decreased to between 78 and 82%. Heat stress (HS) was applied by exposing wheat plants to 40°C for 4 h. A combination of drought and heat stress was applied by subjecting the drought-stressed plants to a heat stress as above. The results indicated that all stresses decreased photosynthesis, but the combination of drought and heat stress exacerbated the negative effects on photosynthesis more than exposure to drought or heat stress alone. Drought stress decreased the transpiration rate (Tr), stomatal conductance (Gs) and intercellular CO2 concentration (Ci), while heat stress increased all of these; the deprivation of water was greater under drought stress than heat stress, but heat stress decreased the antioxidant enzyme activity to a greater extent. Overaccumulated GB could alleviate the decrease of photosynthesis caused by all stresses tested. These suggest that GB induces an increase of osmotic adjustments for drought tolerance, while its improvement of the antioxidative defense system including antioxidative enzymes and antioxidants may be more important for heat tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC6803. BBA-Bioenergetics 1657:23–32. doi:10.1016/j.bbabio.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Feyziev YM, Ahmed A, Hayashi H, Aliev JA, Klimov VV, Murata N, Carpentier R (1996) Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinbetaine and sucrose. J Photochem Photobiol B 34:149–1578. doi:10.1016/1011-1344(95)07276-4

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R (2003) Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160:41–49. doi:10.1078/0176-1617-00845

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371. doi:10.1016/j.bbabio.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  • Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C (1981) A rapid and sensitive method for the determination of ascorbic acid using 4, 7-diphenyl-1, 10-phenanthroline. Agric Biol Chem 45:1289–1290

    CAS  Google Scholar 

  • Bahieldina A, Mahfouz HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, ElItriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427. doi:10.1111/j.1399-3054.2005.00470.x

    Article  CAS  Google Scholar 

  • Baki GKAE, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser WM (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23:515–521. doi:10.1046/j.1365-3040.2000.00568.x

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. doi:10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Blum A, Ebercon A (1981) Cell membrane stability as measure of drought and heat tolerance in wheat. Crop Sci 21:43–47

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principal of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Chimenti CA, Pearson J, Hall AJ (2002) Osmotic adjustment and yield mentanence under drought in sunflower. Field Crop Res 75:235–246. doi:10.1016/S0378-4290(02)00029-1

    Article  Google Scholar 

  • Demiral T, Türkan I (2006) Exogenous glycinebetaine affects growth and praline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ Exp Bot 56:72–79. doi:10.1016/j.envexpbot.2005.01.005

    Article  CAS  Google Scholar 

  • Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase Dα retards abscisic acid and ethylene promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196. doi:10.1105/tpc.9.12.2183

    Article  CAS  PubMed  Google Scholar 

  • Frances MD, William JH, William HV, Charlene T, Kerry MK, Okkyung KC, Susan BA (2006) Protein accumulation and composition in wheat grains: effects of mineral nutrients and high temperature. Eur J Agron 25:96–107. doi:10.1016/j.eja.2006.04.003

    Article  CAS  Google Scholar 

  • Gorham J (1995) Betaines in higher plants: biosynthesis and role in stress metabolism. In: Wallsgrove (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 171–203

  • Guo BH, Zhang YM, Li HJ, Du LQ, Li YX, Zhang JS, Chen SY, Zhu ZQ (2000) Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Botanica Sinica 42:279–283. doi:cnki:ISSN:11-1896.0.2000-03-011 (in Chinase, with English abstract)

    Google Scholar 

  • Hadži-Tašković Šukalivić V (1986) Activity and distribution of nitrogen-metabolism enzymes in the developing maze kernel. Physiol Plant 67:247–252. doi:10.1111/j.1399-3054.1986.tb02451.x

  • Khan MS, Yu x, Kikuchi A, Asahina M (2009) Genetic engineering of glycine betaine biosynthesis to enhance abiotic stress tolerance in plants. Plant Biotechnol 26:125–134

    CAS  Google Scholar 

  • Kreslavski V, Carpentier , Klimov VV, Murata N, Allakhverdiev SI (2007) Molecular mechanisms of stress resistance of the photosynthetic apparatus. Biol Membr 24:195–217

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593. doi:10.1146/annurev.arplant.47.1.569

    Article  CAS  PubMed  Google Scholar 

  • Lu CM, Zhang JH (1999) Effects of water stress on photosystemII photochemistry and itst hermostability in wheat plants. J Exp Bot 50:1199–1206

    Article  CAS  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384. doi:10.1016/j.envexpbot.2007.11.016

    Article  CAS  Google Scholar 

  • Lv SL, Yang AF, Zhang KW, Wang L, Zhang JR (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248. doi:10.1007/s11032-007-9086-x

    Article  CAS  Google Scholar 

  • Ma QQ, Wang W, Li YH, Li DQ, Zou Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum L) by foliar-applied glycinebetaine. J Plant Physiol 163:165–175. doi:10.1016/j.jplph.2005.04.023

    Article  CAS  PubMed  Google Scholar 

  • Ma XL, Wang YJ, Xie SL, Wang C, Wang W (2007) Glycinebetaine application ameliorates negative effects of drought stress in tobacco. Russ J Plant Physiol 54:472–479. doi:10.1134/S1021443707040061

    Article  CAS  Google Scholar 

  • Mäkelä P, Kärkkäinen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475. doi:10.1023/A:1026712426180

    Article  Google Scholar 

  • Mamedov M, Hayashi H, Murata N (1993) Effects of glycinebetaine and unsaturation of membrane lipids on heat stability of photosynthetic electron-transport and phosphorylation reactions in Synechocystis PCC6803. Biochim Biophys Acta 1142:1–5. doi:10.1016/0005-2728(93)90077-S

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. doi:10.1016/j.tplants.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998a) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279. doi:10.1146/annurev.arplant.49.1.249

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998b) Simultaneous measurement of foliar glutathione, γ-glutamylcysteine and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal Biochem 264:98–110. doi:10.1006/abio.1998.2794

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Hibino T, Takabe T, Sugyama T, Yokota A, Miyake H, Takabe T (1998) Transgenically produced glycinebetaine protects ribulose 1, 5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC7942 under salt stress. Plant Cell Physiol 39:425–432

    CAS  Google Scholar 

  • Park EJ, Jeknić Z, Pino MT, Murata N, Chen THH (2007) Glycinebetaine accumulation in chloroplasts is more effective than that in cytosol in protecting transgenic tomato plants against abiotic stress. Plant Cell Environ 30:994–1005. doi:10.1111/j.1365-3040.2007.01694.x

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771. doi:10.1016/S0168-9452(01)00462-9

    Article  CAS  Google Scholar 

  • Quan RD, Shang M, Zhang H, Zhao YX, Zhang JR (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166:141–149. doi:10.1016/j.plantsci.2003.08.018

    Article  CAS  Google Scholar 

  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot 60:368–376. doi:10.1016/j.envexpbot.2006.12.009

    Article  CAS  Google Scholar 

  • Rehman H, Malik SA, Saleem M (2004) Heat tolerance of upland cotton during fruiting stage evaluated using cellular membrane thermostability. Field Crop Res 85:149–158. doi:10.1016/S0378-4290(03)00159-X

    Article  Google Scholar 

  • Rizhsky L, Liang HJ, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151. doi:10.1104/pp.006858

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Liang HJ, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and high temperature. Plant Physiol 134:1683–1696. doi:10.1104/pp.103.033431

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106. doi:10.1111/j.1365-3040.2007.01682.x

    Article  CAS  PubMed  Google Scholar 

  • Sairam PK, Srivastava GC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904. doi:10.1016/S0168-9452(02)00037-7

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress resistant transgenic plants. Plant Physiol 125:180–188

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171. doi:10.1046/j.0016-8025.2001.00790.x

    Article  CAS  PubMed  Google Scholar 

  • Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and containing maize lines. Plant Physiol 107:631–638

    CAS  PubMed  Google Scholar 

  • Saneoka H, Moghaieb REA, Premachandra GS, Fujita K (2004) Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environ Exp Bot 52:131–138. doi:10.1016/j.envexpbot.2004.01.011

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes Q (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060. doi:10.1016/0031-9422(89)80182-7

    Article  CAS  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161:613–619. doi:10.1016/S0168-9452(01)00450-2

    Article  CAS  Google Scholar 

  • Tissue DT, Wright SJ (1995) Effect of seasonal water availability on phenology and the annual shoot carbohydrate cycle of tropical forest shrubs. Funct Ecol 9:518–527

    Article  Google Scholar 

  • Troll W, Cannan RK (1953) A modified photometric ninhydrin method for the analysis of amino and imino acids. J Biol Chem 200:803–811

    CAS  PubMed  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57. doi:cnki:ISSN:0412-0922.0.1990-06-032 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Wang GP, Li F, Zhang J, Zhao MR, Hui Z, Wang W (2010a) Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48:30–41

    Article  CAS  Google Scholar 

  • Wang GP, Zhang XY, Li F, Luo Y, Wang W (2010b) Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48(1):117–126

    Google Scholar 

  • Yang XH, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309. doi:10.1104/pp.105.063164

    Article  CAS  PubMed  Google Scholar 

  • Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733. doi:10.1007/s00425-006-0380-3

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. S. Y. Chen (Institute of Genetics, Chinese Academy of Sciences, China) for her kindly presentation of the transgenic wheat lines to us. This study is supported by National Natural Science Foundation of China (No. 30671259) and by National Key technology R&D program (No. 2006BAD01A02-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, GP., Hui, Z., Li, F. et al. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol Rep 4, 213–222 (2010). https://doi.org/10.1007/s11816-010-0139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-010-0139-y

Keywords

Navigation