Skip to main content
Log in

Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The study of hydroxycinnamic acid amides (HCAAs) which are a group of secondary metabolites has been an interesting one and has become one of the important researches at present. Accumulation of several plant amides was detected in various plants, which play important role in plant growth and development. This paper aims to review the biosynthesis, physiology, and functions of HCAA accumulation in plants during plant growth and development as well as in response to senescence and drought stress. HCAAs are secondary metabolites derived from phenylalanine and tyrosine pathway. Phenylalanine ammonia lyase (PAL) and 4-coumarate CoA ligase (4CL) hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl) transferase (THT) and tyrosine decarboxylase (TyDC) are essential enzymes for HCAA biosynthesis. HCAAs contribute to many developmental processes as well as plant responses against biotic and abiotic stress responses. However, there is a need to specifically investigate the role of many HCAAs in view of plant molecular biology since it is still not fully conceptualized and explained at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28(23):1867–1876

    Article  PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  Google Scholar 

  • Arai S, Suzuki H, Fujimaki M, Sakurai Y (1966) Studies on flavor components in soybean: part II. Phenolic acids in defatted soybean flour. Agric Biol Chem 30(4):364–369

    Article  CAS  Google Scholar 

  • Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M, Veberic R, Phu ML, Solar A, Leslie CA, Dandekar AM (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164:1191–1203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Back K (2001) Hydroxycinnamic acid amides and their possible utilization for enhancing agronomic traits. Plant Pathol 17(3):123–127

    Google Scholar 

  • Baron K, Stasolla C (2008) The role of polyamines during in vivo and in vitro development. In Vitro Cell Dev Biol Plant 44(5):384–395

    Article  CAS  Google Scholar 

  • Bassard J-E, Ullmann P, Bernier F, Werck-Reichhart D (2010) Phenolamides: bridging polyamines to the phenolic metabolism. Phytochemistry 71(16):1808–1824

    Article  CAS  PubMed  Google Scholar 

  • Bokern M, Witte L, Wray V, Nimtz M, Meurer-Grimes B (1995) Trisubstituted hydroxycinnamic acid spermidines from Quercus dentata pollen. Phytochemistry 39(6):1371–1375

    Article  CAS  Google Scholar 

  • Bonneau L, Carré M, Martin-Tanguy J (1994) Polyamines and related enzymes in rice seeds differing in germination potential. Plant Growth Regul 15(1):75–82

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 14(02):103–125

    Article  Google Scholar 

  • Collins FW (1989) Oat phenolics: avenanthramides, novel substituted n-cinnamoylanthranilate alkaloids from oat groats and hulls. J Agric Food Chem 37(1):60–66

    Article  CAS  Google Scholar 

  • Cuypers B, Hahlbrock K (1988) Immunohistochemical studies of compatible and incompatible interactions of potato leaves with Phytophthora infestans and of the nonhost response to Phytophthora megasperma. Can J Bot 66(4):700–705

    Article  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy M, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3(5):371–390

    Article  CAS  PubMed  Google Scholar 

  • Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1(6):171–178

    Article  Google Scholar 

  • Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, Kombrink E (1999) Three 4-coumarate: coenzyme a ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. Plant J 19(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • El-Seedi HR, El-Said AM, Khalifa SA, Göransson U, Bohlin L, Borg-Karlson A-K, Verpoorte R (2012) Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem 60(44):10877–10895

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, Yu M, Penzes-Yost C (1999) Decreased cell wall digestibility in canola transformed with chimeric tyrosine decarboxylase genes from opium poppy. Plant Physiol 120(3):653–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism: physiology and biochemistry. Can J Bot 80(6):577–589

    Article  CAS  Google Scholar 

  • Farmer MJ, Czernic P, Michael A, Negrel J (1999) Identification and characterization of cdna clones encoding hydroxycinnamoyl-coa:tyramine n-hydroxycinnamoyltransferase from tobacco. Eur J Biochem 263(3):686–694

    Article  CAS  PubMed  Google Scholar 

  • Fellenberg C, Vogt T (2015) Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci 20:212–218

    Article  CAS  PubMed  Google Scholar 

  • Fellenberg C, Ziegler J, Handrick V, Vogt T (2011) Polyamine homeostasis in wild type and phenolamide deficient Arabidopsis thaliana stamens. Frontiers Plant Sci 3:180/1–180/11

    Google Scholar 

  • Fritzemeier K-H, Cretin C, Kombrink E, Rohwer F, Taylor J, Scheel D, Hahlbrock K (1987) Transient induction of phenylalanine ammonia-lyase and 4-coumarate: Coa ligase mRnas in potato leaves infected with virulent or avirulent races of Phytophthora infestans. Plant Physiol 85(1):34–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gebhardt C, Valkonen JP (2001) Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39(1):79–102

    Article  CAS  PubMed  Google Scholar 

  • Grienenberger E, Besseau S, Geoffroy P, Debayle D, Heintz D, Lapierre C, Pollet B, Heitz T, Legrand M (2009) A bahd acyltransferase is expressed in the tapetum of Arabidopsis anthers and is involved in the synthesis of hydroxycinnamoyl spermidines. Plant J 58(2):246–259

    Article  CAS  PubMed  Google Scholar 

  • Guillet G, Poupart J, Basurco J, De Luca V (2000) Expression of tryptophan decarboxylase and tyrosine decarboxylase genes in tobacco results in altered biochemical and physiological phenotypes. Plant Physiol 122(3):933–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ (2005) Elevated tyrosine decarboxylase and tyramine hydroxycinnamoyltransferase levels increase wound-induced tyramine-derived hydroxycinnamic acid amide accumulation in transgenic tobacco leaves. Planta 221(6):904–914

    Article  CAS  PubMed  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Biol 40(1):347–369

    Article  CAS  Google Scholar 

  • Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, Venger I, Kärenlampi S, Aharoni A (2008) Non-targeted analysis of spatial metabolite composition in strawberry (Fragaria ananassa) flowers. Phytochemistry 69(13):2463–2481

    Article  CAS  PubMed  Google Scholar 

  • Hedberg C, Hesse M, Werner C (1996) Spermine and spermidine hydroxycinnamoyl transferases in Aphelandra tetragona. Plant Sci 113(2):149–156

    Article  CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme a shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16(6):1446–1465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hohlfeld H, Scheel D, Strack D (1996) Purification of hydroxycinnamoyl-coa:tyramine hydroxycinnamoyltransferase from cell-suspension cultures of Solanum tuberosum L. Cv. Datura. Planta 199(1):166–168

    Article  CAS  Google Scholar 

  • Hurng WP, Kao CH (1993) Endogenous polyamine levels and flooding-enhanced leaf senescence of tobacco. Plant Sci 91(2):121–125

    Article  CAS  Google Scholar 

  • Ishihara A, Kawata N, Matsukawa T, Iwamura H (2000) Induction of n-hydroxycinnamoyltyramine synthesis and tyramine n-hydroxycinnamoyltransferase (THT) activity by wounding in maize leaves. Biosci Biotechnol Biochem 64(5):1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C, Dubouzet JG, Nakao T, Matsuda F, Nishioka T, Miyagawa H, Wakasa K (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54:481–495

    Article  CAS  PubMed  Google Scholar 

  • Ishihara T, Mitsuhara I, Takahashi H, Nakaho K (2012) Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS One 7(10):e46763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang S, Back K (2006) Enriched production of n-hydroxycinnamic acid amides and biogenic amines in pepper (Capsicum annuum) flowers. Sci Hortic 108(3):337–341

    Article  CAS  Google Scholar 

  • Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I (2010) R2r3-namyb8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. Plant Physiol 152(3):1731–1747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keller H, Hohlfeld H, Wray V, Hahlbrock K, Scheel D, Strack D (1996) Changes in the accumulation of soluble and cell wall-bound phenolics in elicitor-treated cell suspension cultures and fungus-infected leaves of Solanum tuberosum. Phytochemistry 42(2):389–396

    Article  CAS  Google Scholar 

  • Kim YS, Park S, Kang K, Lee K, Back K (2011) Tyramine accumulation in rice cells caused a dwarf phenotype via reduced cell division. Planta 233(2):251–260

    Article  CAS  PubMed  Google Scholar 

  • Kostyn K, Czemplik M, Kulma A, Bortniczuk M, Skała J, Szopa J (2012) Genes of phenylpropanoid pathway are activated in early response to Fusarium attack in flax plants. Plant Sci 190:103–115

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov VV, Radyukina N, Shevyakova N (2006) Polyamines and stress: biological role, metabolism, and regulation. Russ J Plant Physiol 53(5):583–604

    Article  CAS  Google Scholar 

  • Landmann C, Hücherig S, Fink B, Hoffmann T, Dittlein D, Coiner HA, Schwab W (2011) Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.). Planta 234(2):305–320

    Article  CAS  PubMed  Google Scholar 

  • Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H (1991) Biochemical plant responses to ozone i. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95(3):882–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lanot A, Hodge D, Lim E-K, Vaistij FE, Bowles DJ (2008) Redirection of flux through the phenylpropanoid pathway by increased glucosylation of soluble intermediates. Planta 228(4):609–616

    Article  CAS  PubMed  Google Scholar 

  • Lee DG, Park Y, Kim M-R, Jung HJ, Seu YB, Hahm K-S, Woo E-R (2004) Anti-fungal effects of phenolic amides isolated from the root bark of lycium chinense. Biotechnol Lett 26(14):1125–1130

    Article  CAS  PubMed  Google Scholar 

  • Lee DE, Kang K, Lee S-G, Back K (2007) Enhanced synthesis of feruloyltyramine and 4-coumaroyltyramine is associated with tyramine availability in transgenic rice expressing pepper tyramine-n-hydroxycinnamoyltransferase. Plant Sci 172(1):57–63

    Article  CAS  Google Scholar 

  • Leubner-Metzger G, Amrhein N (1993) The distribution of hydroxycinnamoylputrescines in different organs of Solanum tuberosum and other solanaceous species. Phytochemistry 32(3):551–556

    Article  CAS  Google Scholar 

  • Liu C-J (2010) Biosynthesis of hydroxycinnamate conjugates: implications for sustainable biomass and biofuel production. Biofuels 1(5):745–761

    Article  CAS  Google Scholar 

  • Louis V, Negrel J (1991) Tyramine hydroxycinnamoyl transferase in the roots of wheat and barley seedlings. Phytochemistry 30(8):2519–2522

    Article  CAS  Google Scholar 

  • Luo J, Fuell C, Parr A, Hill L, Bailey P, Elliott K, Fairhurst SA, Martin C, Michael AJ (2009) A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21(1):318–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin-Tanguy J (1985) The occurrence and possible function of hydroxycinnamoyl acid amides in plants. Plant Growth Regul 3(3–4):381–399

    Article  CAS  Google Scholar 

  • Martin-Tanguy J (1997) Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches. Physiol Plant 100(3):675–688

    Article  CAS  Google Scholar 

  • Matsuno M, Compagnon V, Schoch GA, Schmitt M, Debayle D, Bassard J-E, Pollet B, Hehn A, Heintz D, Ullmann P (2009) Evolution of a novel phenolic pathway for pollen development. Science 325(5948):1688–1692

    Article  CAS  PubMed  Google Scholar 

  • Meißner D, Albert A, Böttcher C, Strack D, Milkowski C (2008) The role of udp-glucose: hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 228(4):663–674

    Article  PubMed  Google Scholar 

  • Meurer B, Wiermann R, Strack D (1988) Phenylpropanoid patterns in fagales pollen and their phylogenetic relevance. Phytochemistry 27(3):823–828

    Article  CAS  Google Scholar 

  • Meyer S, Nagel A, Gebhardt C (2005) Pomamo—a comprehensive database for potato genome data. Nucleic Acids Res 33:D666–D670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreau RA, Nuñez A, Singh V (2001) Diferuloylputrescine and p-coumaroyl-feruloylputrescine, abundant polyamine conjugates in lipid extracts of maize kernels. Lipids 36(8):839–844

    Article  CAS  PubMed  Google Scholar 

  • Muroi A, Matsui K, Shimoda T, Kihara H, Ozawa R, Ishihara A, Nishihara M, Arimura G-I (2012) Acquired immunity of transgenic torenia plants overexpressing agmatine coumaroyltransferase to pathogens and herbivore pests. Sci Rep 2(689). doi:10.1038/srep00689

  • Navarre DA, Payyavula RS, Shakya R, Knowles NR, Pillai SS (2013) Changes in potato phenylpropanoid metabolism during tuber development. Plant Physiol Biochem 65:89–101

    Article  CAS  PubMed  Google Scholar 

  • Negrel J, Javelle F (1997) Purification, characterization and partial amino acid sequencing of hydroxycinnamoyl-coa:tyramine n-(hydroxycinnamoyl) transferase from tobacco cell-suspension cultures. Eur J Biochem 247(3):1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Negrel J, Martin C (1984) The biosynthesis of feruloyltyramine in Nicotiana tabacum. Phytochemistry 23(12):2797–2801

    Article  CAS  Google Scholar 

  • Negrel J, Javelle F, Paynot M (1993) Wound-induced tyramine hydroxycinnamoyl transferase in potato (Solanum tuberosum) tuber discs. J Plant Physiol 142(5):518–524

    Article  CAS  Google Scholar 

  • Negri G, Teixeira EW, Florêncio Alves MLTM, Moreti ACDCC, Otsuk IP, Borguini RG, Salatino A (2011) Hydroxycinnamic acid amide derivatives, phenolic compounds and antioxidant activities of extracts of pollen samples from southeast Brazil. J Agric Food Chem 59(10):5516–5522

    Article  CAS  PubMed  Google Scholar 

  • Park M, Kang K, Park S, Kim YS, Ha S-H, Lee SW, Ahn M-J, Bae J-M, Back K (2008) Expression of serotonin derivative synthetic genes on a single self-processing polypeptide and the production of serotonin derivatives in microbes. Appl Microbiol Biotechnol 81(1):43–49

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lee K, Kim YS, Chi Y-T, Shin JS, Back K (2012) Induced tyramine overproduction in transgenic rice plants expressing a rice tyrosine decarboxylase under the control of methanol-inducible rice tryptophan decarboxylase promoter. Bioprocess Biosyst Eng 35(1–2):205–210

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Stout J, Weng JK, Humphreys J, Ruegger MO, Chapple C (2009) Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J 60(5):771–782

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Scheel D, Strack D (1998) Elicitor-stimulated biosynthesis of hydroxycinnamoyltyramines in cell suspension cultures of Solanum tuberosum. Planta 205(1):51–55

    Article  CAS  Google Scholar 

  • Schmidt A, Grimm R, Schmidt J, Scheel D, Strack D, Rosahl S (1999) Cloning and expression of a potato cdna encoding hydroxycinnamoyl-coa: tyramine-n-(hydroxycinnamoyl) transferase. J Biol Chem 274(7):4273–4280

    Article  CAS  PubMed  Google Scholar 

  • Strack D, Eilert U, Wray V, Wolff J, Jaggy H (1990) Tricoumaroylspermidine in flowers of rosaceae. Phytochemistry 29(9):2893–2896

    Article  CAS  Google Scholar 

  • Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang C-F, Lynn D, Dow JM, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10(11):1801–1816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ten Chen C, Huei Kao C (1991) Senescence of rice leaves xxix. Ethylene production, polyamine level and polyamine biosynthetic enzyme activity during senescence. Plant Sci 78(2):193–198

    Article  CAS  Google Scholar 

  • Torras-Claveria L, Jáuregui O, Codina C, Tiburcio AF, Bastida J, Viladomat F (2012) Analysis of phenolic compounds by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry in senescent and water-stressed tobacco. Plant Sci 182:71–78

    Article  CAS  PubMed  Google Scholar 

  • Villegas M, Brodelius PE, Kylin A (1990) Elicitor-induced hydroxycinnamoyl-coa:tyramine hydroxycinnamoyltransferase in plant cell suspension cultures. Physiol Plant 78(3):414–420

    Article  CAS  Google Scholar 

  • Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005) Water deficits affect caffeate o-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. Plant Physiol 137(3):949–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Von Roepenack-Lahaye E, Newman MA, Schornack S, Hammond-Kosack KE, Lahaye T, Jones JD, Daniels MJ, Dow JM (2003) P-coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J Biol Chem 278(44):43373–43383

    Article  Google Scholar 

  • Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, Percival Zhang YH, Dixon RA, Zhao B (2011) Silencing of 4-coumarate: coenzyme a ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192(3):611–625

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Dong F, Baldermann S, Murata A, Tu Y, Asai T, Watanabe N (2012) Isolation and identification of spermidine derivatives in tea (Camellia sinensis) flowers and their distribution in floral organs. J Sci Food Agri 92(10):2128–2132

    Article  CAS  Google Scholar 

  • Yogendra KN, Pushpa D, Mosa KA, Kushalappa AC, Murphy A and Mosquera T (2014) Quantitative resistance in potato leaves to late blight associated with induced hydroxycinnamic acid amides. Funct Integr Genomics 14(2):285–298

    Article  CAS  PubMed  Google Scholar 

  • Yu X-H, Gou J-Y, Liu C-J (2009) Bahd superfamily of acyl-coa dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression. Plant Mol Bio 70(4):421–442

    Article  CAS  Google Scholar 

  • Zamble A, Sahpaz S, Hennebelle T, Carato P, Bailleul F (2006) N1, n5, n10-tris (4-hydroxycinnamoyl) spermidines from Microdesmis keayana roots. Chem Biodivers 3(9):982–989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Academy of Agricultural Science (PJ00979801) and National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2014R1A1A2A16056171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gab Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macoy, D.M., Kim, WY., Lee, S.Y. et al. Biosynthesis, physiology, and functions of hydroxycinnamic acid amides in plants. Plant Biotechnol Rep 9, 269–278 (2015). https://doi.org/10.1007/s11816-015-0368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0368-1

Keywords

Navigation