Skip to main content

Advertisement

Log in

CHLORIDE CHANNEL 1 promotes drought tolerance in rice, leading to increased grain yield

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Plant chloride channels (CLCs) localize to the plasma and organellar membranes; these channels play pivotal roles in the modulation of ion homeostasis and cell turgor. Recent studies have shown that the expression of CLCs is involved in plant responses to environmental stress. Here, we examined the rice (Oryza sativa) tonoplast-localized channel OsCLC1. OsCLC1 is preferentially expressed in roots, and therefore, we generated transgenic rice with root-specific overexpression of OsCLC1 (RCc3::OsCLC1). We also identified a T-DNA mutant line that lacks expression of OsCLC1 (osclc1). We found that RCc3::OsCLC1 rice plants showed increased tiller number and grain yield, whereas the osclc1 plants exhibited decreased tiller number and grain yield, compared with wild type. These observations suggest that expression of OsCLC1 affects rice growth and productivity. Furthermore, RCc3::OsCLC1 plants showed enhanced drought tolerance, leading to increased grain yield compared to wild-type plants grown under the same conditions. By contrast, osclc1 mutants exhibited reduced drought tolerance and productivity compared to wild-type plants. When expression of OsCLC1 was analyzed in drought, jasmonic acid (JA) or abscisic acid (ABA)-treated rice, expression of OsCLC1 was preferentially upregulated in roots in response to drought and JA, and was preferentially upregulated in shoots in response to ABA. Together with the finding that expression of OsCLC1 is positively correlated both with expressions of OsDREB1A and OsbHLH148, key transcription factors in drought and JA responses, respectively, these results suggest that OsCLC1 regulates drought tolerance in rice and JA signaling is involved in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi A, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Alam MM, Nahar K, Hasanuzzaman M, Fujita M (2014) Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species. Plant Biotechnol Rep 8:279–293

    Article  Google Scholar 

  • Baetz U, Eisenach C, Tohge T, Martinoia E, De Angeli A (2016) Vacuolar chloride fluxes impact ion content and distribution during early salinity stress. Plant Physiol 172:1167–1181

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Chen J-Q, Meng X-P, Zhang Y, Xia M, Wang X-P (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–534 (536–537)

    PubMed  CAS  Google Scholar 

  • Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E (2006) Integration of abscisic acid signalling into plant responses. Plant Biol 8:314–325

    Article  PubMed  CAS  Google Scholar 

  • Cruz de Carvalho R, Catalá M, Marques da Silva J, Branquinho C, Barreno E (2012) The impact of dehydration rate on the production and cellular location of reactive oxygen species in an aquatic moss. Ann Bot 110:1007–1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Angeli A, Monachello D, Ephritikhine G, Frachisse J, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442:939–942

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Wu H, Ma S, Xiang D, Liu R, Xiong L (2017) OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice. Front plant sci 8:2108

    Article  PubMed  PubMed Central  Google Scholar 

  • Geelen D, Lurin C, Bouchez D, Frachisse JM, Lelièvre F, Courtial B, Barbier-Brygoo H, Maurel C (2000) Disruption of putative anion channel gene AtCLC-a in Arabidopsis suggests a role in the regulation of nitrate content. Plant J 21:259–267

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Jentsch TJ (2008) CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 43:3–36

    Article  PubMed  CAS  Google Scholar 

  • Jeong JS, Kim YS, Redillas MC, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reuzeau C, Kim JK (2013) OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J 11:101–114

    Article  PubMed  CAS  Google Scholar 

  • Jossier M, Kroniewicz L, Dalmas F, Le Thiec D, Ephritikhine G, Thomine S, Barbier-Brygoo H, Vavasseur A, Filleur S, Leonhardt N (2010) The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J 64:563–576

    Article  PubMed  CAS  Google Scholar 

  • Kim EH, Kim YS, Park S-H, Koo YJ, Choi YD, Chung Y-Y, Lee I-J, Kim J-K (2009) Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee D-K, Jung H, Jang G, Jeong JS, Kim YS, Ha S-H, Do Choi Y, Kim J-K (2016a) Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol 172:575–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee D-K, Park S-H, Seong S-Y, Kim YS, Jung H, Choi YD, Kim J-K (2016b) Production of insect-resistant transgenic rice plants for use in practical agriculture. Plant Biotechnol Rep 10:391–401

    Article  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Biol 49:199–222

    Article  CAS  Google Scholar 

  • Li X, Cheng X, Liu J, Zeng H, Han L, Tang W (2011) Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol Rep 5:61–69

    Article  Google Scholar 

  • Lim H, Hwang HJ, Kim AR, Cho MH, Ji H, Kim CK, Ji SU, Cho JI, Park SC, Lee G-S (2016) A simple, rapid and systematic method for the developed GM rice analysis. Plant Biotechnol Rep 10:25–33

    Article  Google Scholar 

  • Marmagne A, Vinauger-Douard M, Monachello D, De Longevialle AF, Charon C, Allot M, Rappaport F, Wollman F-A, Barbier-Brygoo H, Ephritikhine G (2007) Two members of the Arabidopsis CLC (chloride channel) family, AtCLCe and AtCLCf, are associated with thylakoid and Golgi membranes, respectively. J Exp Bot 58:3385–3393

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2006) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Passioura JB, Guo J, Chazen O, Cramer GR (2000) Water relations and leaf expansion: importance of time scale. J Exp Bot 51:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Fukuda A, Sakai S, Tanaka Y (2006) Molecular cloning, functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (Oryza sativa L.). Plant Cell Physiol 47:32–42

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CT, Agorio A, Jossier M, Depré S, Thomine S, Filleur S (2015) Characterization of the chloride channel-like, AtCLCg, involved in chloride tolerance in Arabidopsis thaliana. Plant Cell Physiol 57:764–775

    Article  PubMed  CAS  Google Scholar 

  • Oh S-J, Song SI, Kim YS, Jang H-J, Kim SY, Kim M, Kim Y-K, Nahm BH, Kim J-K (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423

    Article  PubMed  CAS  Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front plant sci 6:1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Sazegari S, Niazi A, Ahmadi FS (2015) A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. Bioinformation 11:101–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424

    Article  PubMed  CAS  Google Scholar 

  • Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD (2011) OsbHLH148, a basic helix–loop–helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Tampieri E, Baraldi E, Carnevali F, Frascaroli E, De Santis A (2011) The activity of plant inner membrane anion channel (PIMAC) can be performed by a chloride channel (CLC) protein in mitochondria from seedlings of maize populations divergently selected for cold tolerance. J Bioenerg Biomembr 43:611–621

    Article  PubMed  CAS  Google Scholar 

  • Thole V, Alves SC, Worland B, Bevan MW, Vain P (2009) A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon T-DNA insertional mutants. Nat Protoc 4:650–661

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  PubMed  CAS  Google Scholar 

  • von der Fecht-Bartenbach J, Bogner M, Krebs M, Stierhof YD, Schumacher K, Ludewig U (2007) Function of the anion transporter AtCLC-d in the trans-Golgi network. Plant J 50:466–474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U (2010) CLC-b-mediated NO 3/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol 51:960–968

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Su SZ, Wu Y, Li SP, Shan XH, Liu HK, Wang S, Yuan YP (2014) Overexpression of maize chloride channel gene ZmCLC-d in Arabidopsis thaliana improved its stress resistance. Biol Plant 59:55–64

    Article  CAS  Google Scholar 

  • Wellman CH, Gray J (2000) The microfossil record of early land plants. Philos Trans R Soc B Biol Sci 355:717–732

    Article  CAS  Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Buchholz WG, DeRose RT, Hall TC (1995) Characterization of a rice gene family encoding root-specific proteins. Plant Mol Biol 27:237–248

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Zou H, Wu Y, Liu H, Yuan Y (2011) Identification and characterisation of candidate genes involved in chilling responses in maize (Zea mays L.). Plant Cell Tissue Org Cult 106:127–141

    Article  CAS  Google Scholar 

  • Zhang N, Si H-J, Wen G, Du H-H, Liu B-L, Wang D (2011) Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol Rep 5:71–77

    Article  Google Scholar 

  • Zifarelli G, Pusch M (2010) CLC transport proteins in plants. FEBS Lett 584:2122–2127

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We heartily thank Prof. G. An for donating osclc1 mutant seeds. This work was carried out with the support of the Cooperative Research Program for Agriculture Science & Technology Development (Project no. PJ01121501 to Y. D. C. & PJ01364301 to G. J.) Rural Development Administration, Republic of Korea, through the National Center for GM Crops, and the National Research Foundation of Korea Grant funded by the Korean Government (MOE) [NRF-2016R1D1A1B03931167]. A graduate research assistantship to T. Y. U. and S. L. from the Brain Korea 21 Plus project of the MOE is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Do Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 516 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Um, T.Y., Lee, S., Kim, JK. et al. CHLORIDE CHANNEL 1 promotes drought tolerance in rice, leading to increased grain yield. Plant Biotechnol Rep 12, 283–293 (2018). https://doi.org/10.1007/s11816-018-0492-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-018-0492-9

Keywords

Navigation