Skip to main content
Log in

Optimal Design of Piezoelectric Modal Transducers

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Piezoelectric materials are those having the ability to convert electrical energy into mechanical one, and vice versa. Often surface bonded to structures, they are commonly used for sensing, acting and even for reducing noise and structural vibrations as part of active control systems. And, further, they can isolate specific mode shapes of structures when working as spatial filters in the frequency domain (i.e. modal transducers) by shaping properly the piezoelectric layers. This article is intended to revise that concept, initially conceived for beam-type structures only, and explain how it has been extended to plates and shells by means of optimization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. Andreassen E, Lazarov B, Sigmund O (2014) Design of manufacturable 3D extremal elastic microstructure. Mech Mater 69(1):1–10

    Article  Google Scholar 

  2. Bathe K, Wilson E (1976) Numerical methods in finite element analysis, 1st edn. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  3. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. No. 724 in 2nd edn. Springer, New York

  4. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  5. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  6. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  7. Carbonari RC, Silva ECN, Nishiwaki S (2007) Optimum placement of piezoelectric material in piezoactuator design. Smart Mater Struct 16(1):207–220

    Article  Google Scholar 

  8. Clark RL, Burke SE (1996) Practical limitations in achieving shaped modal sensors with induced strain materials. J Vib Acoust 118(4):668–675

    Article  Google Scholar 

  9. Clarke F (1990) Optimization and nonsmooth analysis, 1st edn. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  10. Dailey RL (1987) Eigenvector derivatives with repeated eigenvalues. AIAA J 27(4):486–491

    Article  MathSciNet  Google Scholar 

  11. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  12. Díaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(7):1487–1502

    Article  MathSciNet  MATH  Google Scholar 

  13. Donoso A, Bellido JC, Chacón JM (2010) Numerical and analytical method for the design of piezoelectric modal sensors/actuators for shell-type structures. Int J Numer Methods Eng 81:1700–1712

    MATH  Google Scholar 

  14. Donoso A, Bellido JC (2009) Distributed piezoelectric modal sensors for circular plates. J Sound Vib 319:50–57

    Article  MATH  Google Scholar 

  15. Donoso A, Bellido JC (2009) Systematic design of distributed piezoelectric modal sensors/actuators for rectangular plates by optimizing the polarization profile. Struct Multidiscip Optim 38(4):347–356

    Article  MathSciNet  MATH  Google Scholar 

  16. Donoso A, Bellido JC (2009) Tailoring distributed modal sensors for in-plane modal filtering. Smart Mater Struct 18(3):037,002

    Article  Google Scholar 

  17. Donoso A, Sigmund O (2016) Topology optimization of piezo modal transducers with null-polarity phases. Struct Multidiscip Optim 53

  18. Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34(2):91–110

    Article  MathSciNet  MATH  Google Scholar 

  19. Friswell MI (1996) The derivatives of repeated eigenvalues and their associated eigenvectors. J Vib Acoust 118(3):390–397

    Article  Google Scholar 

  20. Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  21. Guest JK (2015) Optimizing the layout of discrete objects in structures and materials: a projection-based topology optimization approach. Comput Methods Appl Mech Eng 283:330–351

    Article  Google Scholar 

  22. Hansen LV (2005) Topology optimization of free vibrations of fiber laser packages. Struct Multidiscip Optim 29(5):341–348

    Article  Google Scholar 

  23. IEEE: Standard on Piezoelectricity (1988) ANSI/IEEE, pp 176–1987. doi:10.1109/IEEESTD.1988.79638

  24. Jaffe J, Roth RS, Marzullo S (1954) Piezoelectric properties of lead Zirconate-lead Titanate solid-solution ceramics. J Appl Phys 25(25):809–810

    Article  Google Scholar 

  25. Jakob SJ, Niels LP (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289(45):967–986

    Google Scholar 

  26. Jensen J, Sigmund O (2011) Topology optimization for nano-photonics. Laser Photonics Rev 5(2):308–321

    Article  Google Scholar 

  27. Jian K, Friswell MI (2006) Designing distributed modal sensors for plate structures using finite element analysis. Mech Syst Signal Process 20(8):2290–2304

    Article  Google Scholar 

  28. Jian K, Friswell MI (2007) Distributed modal sensors for rectangular plate structures. J Intell Mater Syst Struct 18(9):939–948

    Article  Google Scholar 

  29. Kang Z, Wang X, Luo Z (2012) Topology optimization for static shape control of piezoelectric plates with penalization on intermediate actuation voltage. J Mech Des 134(5):051,006

    Article  Google Scholar 

  30. Kang Z, Tong L (2008) Topology optimization-based distribution design of actuation voltage in static shape control of plates. Comput Struct 86(19–20):1885–1893

    Article  Google Scholar 

  31. Kawai H (1969) The piezoelectricity of poly (vinylidene fluoride). Jpn J Appl Phys 8:975–976

    Article  Google Scholar 

  32. Kim J, Hwang JS, Kim SJ (2001) Design of modal transducers by optimizing spatial distribution of discrete gain weights. AIAA J 39:1969–1976

    Article  Google Scholar 

  33. Kim TS, Kim YY (2000) MAC-based mode-tracking in structural topology optimization. Comput Struct 74(3):375–383

    Article  MathSciNet  Google Scholar 

  34. Kögl M, Silva ECN (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14(2):387–399

    Article  Google Scholar 

  35. Kucera M, Manzaneque T, Sánchez-Rojas JL, Bittner A, Schmid U (2013) Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop. J Micromech Microeng 23(8):085,009

    Article  Google Scholar 

  36. Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86:189–218

    Article  Google Scholar 

  37. Lee I (1996) Numerical method for sensitivity analysis of eigensystems with non-repeated and repeated eigenvalues. J Sound Vib 195(1):17–32

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee CK, Moon FC (1990) Modal sensors/actuators. J Appl Mech 57(2):434–441

    Article  MathSciNet  Google Scholar 

  39. Lema MA (2016) Diseño de microsensores piezoeléctricos mediante formulación robusta (2016). Master thesis, Universidad de Castilla-La Mancha

  40. Lin R, Wang Z, Lim MK (1996) A practical algorithm for the efficient computation of eigenvector sensitivities. Comput Methods Appl Mech Eng 130(3):355–367

    Article  MathSciNet  MATH  Google Scholar 

  41. Luo Z, Gao W, Song C (2010) Design of multi-phase piezoelectric actuators. J Intell Mater Syst Struct 21(18):1851–1865

    Article  Google Scholar 

  42. Ma ZD, Cheng HC, Kikuchi N (1994) Structural design for obtaining desired eigenfrequencies by using the topology and shape optimization method. Comput Syst Eng 5(1):77–89

    Article  Google Scholar 

  43. Maeda Y, Nishiwaki S, Izui K, Yoshimura M, Matsui K, Terada K (2006) Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int J Numer Methods Eng 67(5):597–628

    Article  MathSciNet  MATH  Google Scholar 

  44. Moheimani SO, Fleming AJ (2006) Piezoelectric transducers for vibration control and damping, 2nd edn. Springer, New York

    MATH  Google Scholar 

  45. Nakasone PH, Silva ECN (2010) Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. J Intell Mater Syst Struct 21(16):1627–1652

    Article  Google Scholar 

  46. Nelson RB (1976) Simplified calculation of eigenvector derivatives. AIAA J 14(9):1201–1205

    Article  MathSciNet  MATH  Google Scholar 

  47. Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  48. Porn S, Nasser H, Coelho RF, Belouettar S, Deraemaeker A (2016) Level set based structural optimization of distributed piezoelectric modal sensors for plate structures. Int J Sol Struct 80:348–358

    Article  Google Scholar 

  49. Preumont A, François A, De Man P, Piefort V (2003) Spatial filters in structural control. J Sound Vib 265(1):61–79

    Article  MathSciNet  MATH  Google Scholar 

  50. Pulskamp JS, Bedair SS, Polcawich RG, Smith GL, Martin J, Power B, Bhave SA (2012) Electrode-shaping for the excitation and detection of permitted arbitrary modes in arbitrary geometries in piezoelectric resonators. IEEE Trans Ultrason Ferroelectr Freq Control 59(5):1043–1060

    Article  Google Scholar 

  51. Ruiz D (2015) Optimal design of piezoelectric microtransducers. Ph.D. thesis, Universidad de Castilla-La Mancha

  52. Ruiz D, Bellido JC, Donoso A, Sánchez-Rojas JL (2013) Design of in-plane piezoelectric sensors for static response by simultaneously optimizing the host structure and the electrode profile. Struct Multidiscip Optim 48(5):1023–1026

    Article  Google Scholar 

  53. Ruiz D, Bellido JC, Donoso A (2016) Design of piezoelectric modal filters by simultaneously optimizing the structure layout and the electrode profile. Struct Multidiscip Optim 53:715–730

    Article  MathSciNet  Google Scholar 

  54. Ruiz D, Donoso A, Bellido JC, Kucera M, Schmid U, Sánchez-Rojas JL (2016) Design of piezoelectric microtransducers based on the topology optimization method. Microsyst Technol 22(7):1733–1740

    Article  Google Scholar 

  55. Ruiz D, Díaz-Molina A, Sigmund O, Donoso A, Bellido JC, Sánchez-Rojas JL. Optimal design of robust piezoelectric unimorph microgrippers. Sens Act A Phys (submitted for publication)

  56. Ruiz D, Sigmund O. Optimal design of robust piezoelectric microgrippers under large displacements (work in progress)

  57. Sánchez-Rojas JL, Hernando J, Donoso A, Bellido JC, Manzaneque T, Ababneh A, Seidel H, Schmid U (2010) Modal optimization and filtering in piezoelectric microplate resonators. J Micromech and Microeng 20(5):055027

    Article  Google Scholar 

  58. Schevenels M, Lazarov BS, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200(4952):3613–3627

    Article  MATH  Google Scholar 

  59. Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Multidiscip Optim 8:207–227

    Article  Google Scholar 

  60. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  61. Sigmund O, Torquato S, Aksay IA (1998) On the design of 1–3 piezo-composites using topology optimization. J Mater Res 13(4):1038–1048

    Article  Google Scholar 

  62. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  63. Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sin 25(2):227–239

    Article  MATH  Google Scholar 

  64. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  65. Silva ECN, Fonseca JSO, Kikuchi N (1997) Optimal design of piezoelectric microstructures. Comput Mech 19(5):397–410

    Article  MATH  Google Scholar 

  66. Silva ECN, Fonseca JSO, de Espinosa FMC, Crumm AT, Brady GA, Halloran JW, Kikuchi N (1999) Design of piezocomposite materials and piezoelectric transducers using topology optimization—part I. Arch Comput Methods Eng 6(2):117–182

    Article  Google Scholar 

  67. Silva ECN, Nishiwaki S, Kikuchi N (1999) Design of piezocomposite materials and piezoelectric transducers using topology optimization—part II. Arch Comput Methods Eng 6(3):191–215

    Article  Google Scholar 

  68. Silva ECN, Kikuchi N (1999) Design of piezocomposite materials and piezoelectric transducers using topology optimization—part III. Arch Comput Methods Eng 6(4):305–329

    Article  Google Scholar 

  69. Silva ECN, Kikuchi N (1999) Design of piezoelectric transducers using topology optimization. Smart Mater Struct 8(3):350–364

    Article  Google Scholar 

  70. Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124

    Article  Google Scholar 

  71. Sun D, Tong L, Wang D (2002) Modal actuator/sensor by modulating thickness of piezoelectric layers for smart plates. AIAA J 40:1676–1679

    Article  Google Scholar 

  72. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  73. Tcherniak D (2002) Topology optimization of resonating structures using SIMP method. Int J Numer Methods Eng 54(11):1605–1622

    Article  MATH  Google Scholar 

  74. Tsai TD, Cheng CC (2013) Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip Optim 47(5):673–686

    Article  MathSciNet  MATH  Google Scholar 

  75. Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  76. Wang B, Caldwell S (1993) An improved approximate method for computing eigenvector derivatives. Finite Elem Anal Des 14(4):381–392

    Article  MATH  Google Scholar 

  77. Zhang X, Kang Z, Li M (2014) Topology optimization of electrode coverage of piezoelectric thin-walled structures with CGVF control for minimizing sound radiation. Struct Multidiscip Optim 50:799–814

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors would like to thank the kind invitation from ARCME Editors-in-Chief to write this survey paper. Authors acknowledge financial support form the Spanish Ministerio de Economía y Competitividad through Grant MTM2013-47053-P, the Junta de Castilla-La Mancha and the European Fund for Regional Development through Grant PEII-2014-010-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ruiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human Participants and Animals

This research does not involve neither human participants nor animals.

Informed Consent

All the authors are informed and provided their consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz, D., Bellido, J.C. & Donoso, A. Optimal Design of Piezoelectric Modal Transducers. Arch Computat Methods Eng 25, 313–347 (2018). https://doi.org/10.1007/s11831-016-9200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9200-5

Navigation