Skip to main content

Advertisement

Log in

Carbon-nanotube-based electrochemical double-layer capacitor technologies for spaceflight applications

  • Research Summary
  • Carbon Nanotubes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Electrochemical double-layer capacitors, or supercapacitors, have tremendous potential as high-power energy sources for use in low-weight hybrid systems for space exploration. Electrodes based on single-wall carbon nanotubes (SWCNTs) offer exceptional power and energy performance due to the high surface area, high conductivity, and the ability to functionalize the SWCNTs to optimize capacitor properties. This paper will report on the preparation of electrochemical capacitors incorporating SWCNT electrodes and their performance compared with existing commercial technology. Preliminary results indicate that substantial increases in power and energy density are possible. The effects of nanotube growth and processing methods on electrochemical capacitor performance is also presented. The compatibility of different SWCNTs and electrolytes was studied by varying the type of electrolyte ions that accumulate on the high-surface-area electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reynolds et al., NASA Tech Briefs (June 2005), p. 70.

  2. T. Christen and M.W. Carlen, J. Power Sources, 91 (2000), p. 210.

    Article  CAS  Google Scholar 

  3. http://data.energizer.com/PDFs/typical_characteristics.pdf.

  4. C. Emmenegger et al., to be published in J. Power Sources.

  5. M. Endo et al., Carbon Sci. 1 (2001), p. 117.

    Google Scholar 

  6. B.E. Conway, Electrochemical Supercapacitors—Scientific Fundamentals and Technological Applications (New York: Kluwer Academic/Plenum, 1999).

    Google Scholar 

  7. Q.L. Fang et al., J. Electrochem. Soc., 148 (2001), p. A833.

  8. J. Jiang and A. Kucernak, Electrochim. Acta, 47 (2002), p. 2381.

    Article  CAS  Google Scholar 

  9. M. Mastragostino, C. Arbizzani, and F. Soavi, Solid State Ionics, 148 (2002), p. 493.

    Article  CAS  Google Scholar 

  10. W.-C. Chen, T.-C. Wen, and H. Teng, Electrochim. Acta, 48 (2003), p. 641.

    Article  CAS  Google Scholar 

  11. D. Lozano-Castello et al. Carbon, 41 (2003), p. 1765.

    Article  CAS  Google Scholar 

  12. P.J. Gamby et al., J. Power Sources, 101 (2001), p. 109.

    Article  CAS  Google Scholar 

  13. A. Laforgue et al., J. Electrochem. Soc., 150 (2003), p. A645.

  14. A. Du Pasquier et al., J. Power Sources, 115 (2003), p. 171.

    Article  Google Scholar 

  15. A. Chu and P. Braatz, J. Power Sources, 112 (2002).

  16. R. Kötz and M. Carlen, Electrochim. Acta, 45 (2000), p. 2483.

    Article  Google Scholar 

  17. S. Iijima, Nature, 354 (1991), p. 56.

    Article  CAS  Google Scholar 

  18. A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth, 32 (1976), pp. 335–349.

    Article  CAS  Google Scholar 

  19. M. Kociak et al., Phys. Rev. Lett., 86 (2001), p. 2416.

    Article  CAS  Google Scholar 

  20. A.C. Dillon et al., Nature, 386 (1997), p. 377.

    Article  CAS  Google Scholar 

  21. A.G. Rinzler et al., Science, 269 (1995), p. 1550.

    Article  CAS  Google Scholar 

  22. P.G. Collins, M.S. Arnold, and P. Avouris, Science, 292 (2001), p. 706.

    Article  CAS  Google Scholar 

  23. C. Emmenegger, to be published in J. Power Sources.

  24. http://pl.legoff.free.fr/us/usscap.htm.

  25. D. Qu, J. Power Sources, 109 (2002), p. 403.

    Article  CAS  Google Scholar 

  26. C. Niu et al., Appl. Phys. Lett., 70 (1997), p. 1480.

    Article  CAS  Google Scholar 

  27. E. Frackowiak et al., Fuel Process. Technol., 77–78 (2002), p. 213.

    Article  Google Scholar 

  28. Ch. Emmeneger et al., Appl. Surf. Sci., 162–163 (2000), p. 452.

    Article  Google Scholar 

  29. A.K. Chatterjee et al., Electrochim. Acta, 48 (2003), p. 3439.

    Article  CAS  Google Scholar 

  30. K. Kim et al., “Electrochemical Investigation of Quaternary Ammonium/Aluminum Chloride Ionic Liquids,” J. Electrochemical Society, 151 (2004), A1168–72.

    Article  CAS  Google Scholar 

  31. K. Kim, C. Lang, and P.A. Kohl, “Properties of Benzyl-substituted Quaternary Ammonium Ionic Liquids,” J. Electrochem. Soc., in press.

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact W.J. Ready, Georgia Tech Research Institute, 925 Dalney St., Atlanta, GA 30332; (404) 385-4497; fax (404) 894-0580; e-mail jud.ready@gtri.gatech.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arepalli, S., Fireman, H., Huffman, C. et al. Carbon-nanotube-based electrochemical double-layer capacitor technologies for spaceflight applications. JOM 57, 26–31 (2005). https://doi.org/10.1007/s11837-005-0179-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-005-0179-x

Keywords

Navigation