Skip to main content
Log in

The intermediate temperature deformation of Ni-based superalloys: Importance of reordering

  • 75 Years of Dislocations/Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A number of planar deformation mechanisms, such as microtwinning, a[112] dislocation ribbon, and superlattice intrinsic and superlattice extrinsic stacking fault formation, can operate during the intermediate temperature deformation of nickle-based superalloys. The fundamental, rate-limiting processes controlling these deformation mechanisms are not fully understood. It has been recently postulated that reordering of atoms in the wake of the gliding partial dislocations as they shear the γ′precipitates within the γ/γ′microstructure is the limiting process. Experimental evidence that substantiates the validity of the reordering model for the microtwinning mechanism is provided. A conceptual approach to study reordering at the atomic scale using ab-initio calculation methods is also presented. The results of this approach provide a clear conceptualization of the energetics and kinetics of the reordering process, which may be generically important for the aforementioned planar deformation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Gleiter and E. Hornbogen, Physica Status Solidi, 12 (1965), p. 251.

    Article  CAS  Google Scholar 

  2. B.H. Kear, J.M. Oblak, and A. Giamei, Metallurgical Transactions, 1 (1970), p. 2477.

    CAS  Google Scholar 

  3. T.M. Pollock and A.S. Argon, Acta Metallurgica et Materialia, 40 (1992), p. 1.

    Article  CAS  Google Scholar 

  4. K. Kakehi, Scripta Materialia, 41 (1999), p. 461.

    Article  CAS  Google Scholar 

  5. D.M. Knowles and Q.Z. Chen, Materials Science and Engineering, A340 (2003), p. 88.

    Google Scholar 

  6. G.B. Viswanathan et al., Philosophical Magazine, 86 (2006), p. 4823.

    Article  ADS  CAS  Google Scholar 

  7. G.B. Viswanathan et al., Acta Materialia, 53 (2005), p. 3041.

    Article  CAS  Google Scholar 

  8. Q.Z. Chen and D.M. Knowles, Materials Science and Engineering, 356 (2003), p. 352.

    Article  Google Scholar 

  9. B. Decamps et al., Philosophical Magazine, 84 (2004), p. 91.

    Article  ADS  CAS  Google Scholar 

  10. B.H. Kear and J.M. Oblak, Journal de Physique Colloques, 35 (1974), p. C7–35.

    Google Scholar 

  11. M. Kolbe, Material Science and Engineering A, 319–321 (2001), p. 383.

    Article  Google Scholar 

  12. S. Karthikeyan et al., Scripta Materialia, 54 (2006), p. 1157.

    Article  CAS  Google Scholar 

  13. G. Kresse and J. Furthmüller, Comput. Mat. Sci., 6 (1996), p. 15.

    Article  CAS  Google Scholar 

  14. G. Kresse and D. Joubert, Phys. Rev. B, 59 (1999), p. 1758.

    Article  ADS  CAS  Google Scholar 

  15. L. Kovarik et al., Progress in Materials Science (submitted for publication).

  16. C. Jiang, D.J. Sordelet, and B. Gleeson, Acta Materialia, 54 (2006), p. 1147.

    Article  CAS  Google Scholar 

  17. B.H. Kear, G.R. Leverant, and J.M. Oblak, Transaction of ASM, 62 (1969), p. 639.

    CAS  Google Scholar 

  18. R. Unocic et al., Superalloys 2008, ed. R.C. Reed et al. (Warrendale, PA: TMS, 2008), p. 377.

    Google Scholar 

  19. C.M.F. Rae and R.C. Reed, Acta Materialia, 55 (2007), p. 1067.

    Article  CAS  Google Scholar 

  20. A. Giamei et al., Proc. 29th Annual Meeting EMSA (Baton Rouge: Claitor’s Publ., 1971), p. 112.

    Google Scholar 

  21. T. Link, Scripta Metallurgica et Materialia, 31 (1994), p. 671.

    Article  CAS  Google Scholar 

  22. Y.Q. Sun, M.A. Crimp, and P.M. Hazzleidine, Philosophical Magazine A, 64 (1991), p. 223.

    Article  ADS  CAS  Google Scholar 

  23. M. Yamaguchi et al., Philosophical Magazine A, 45 (1982), p. 867.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Mills.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovarik, L., Unocic, R.R., Li, J. et al. The intermediate temperature deformation of Ni-based superalloys: Importance of reordering. JOM 61, 42–48 (2009). https://doi.org/10.1007/s11837-009-0026-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0026-6

Keywords

Navigation