Skip to main content
Log in

The Influence of Grain Boundaries on Radiation-Induced Point Defect Production in Materials: A Review of Atomistic Studies

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Radiation-induced defects cause severe degradation of materials properties during irradiation that can ultimately cause the material to fail. Consequences of these defects include swelling, embrittlement, and undesirable phase transformations. Nanocrystalline materials, which contain a high density of grain boundaries, have demonstrated enhanced radiation tolerance compared to large grain counterparts under certain conditions. This is because, as has long been recognized, grain boundaries can serve as defect sinks for absorbing and annihilating radiation-induced defects. Increasingly, researchers have examined how grain boundaries influence the direct production of defects during collision cascade, the origin of the radiation-induced defects. In this review article, we analyze the computational studies in this area that have been performed during the past two decades. These studies examine defect production near grain boundaries in metallic, ionic, and covalent systems. It is found that, in most systems, grain boundaries absorb more interstitials than vacancies during the defect production stage. While this is generically true of most boundaries, the detailed interaction between defects and grain boundaries does depend on boundary atomic structure, the stress state near the boundary, cascade-boundary separation, and materials properties. Furthermore, the defect distribution near boundaries is qualitatively different from that in single crystals, with the former often exhibiting larger vacancy clusters and smaller interstitial clusters than the latter. Finally, grain boundaries that are damaged after cascades have occurred exhibit different interaction behavior with defects than their pristine counterparts. Together, these atomistic simulation results provide useful insight for both developing higher-level modeling of defect evolution at long timescales and how interfaces influence radiation damage evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Becquart and C. Domain, Metall. Mater. Trans. A 42, 852 (2011).

    Article  Google Scholar 

  2. S.J. Zinkle and K. Farrell, J. Nucl. Mater. 168, 262 (1989).

    Article  Google Scholar 

  3. T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, and K.E. Sickafus, Appl. Phys. Lett. 90, 263115 (2007).

    Article  Google Scholar 

  4. Y. Chimi, A. Iwase, N. Ishikawa, M. Kobiyama, T. Inami, and S. Okuda, J. Nucl. Mater. 297, 355 (2001).

    Article  Google Scholar 

  5. A.D. Brailsford and R. Bullough, Phil. Trans. R. Soc. Lond. A 302, 87 (1981).

    Article  Google Scholar 

  6. B.N. Singh and A.J.E. Foreman, Phil. Mag. A 66, 975 (1992).

    Article  Google Scholar 

  7. K. Sugio, Y. Shimomura, and T.D. de la Rubia, J. Phys. Soc. Jpn. 67, 882 (1998).

    Article  Google Scholar 

  8. M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria, Phys. Rev. Lett. 88, 125505 (2002).

    Article  Google Scholar 

  9. M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria, Phil. Mag. 83, 3599 (2003).

    Article  Google Scholar 

  10. M. Samaras, P.M. Derlet, H. Van Swygenhoven, and M. Victoria, Nucl. Instrum. Methods Phys. Res. Sect. B 202, 51 (2003).

    Article  Google Scholar 

  11. M. Samaras, P.M. Derlet, H.V. Swygenhoven, and M. Victoria, J. Nucl. Mater. 351, 47 (2006).

    Article  Google Scholar 

  12. M.J. Demkowicz, O. Anderoglu, X.H. Zhang, and A. Misra, J. Mater. Res. 26, 1666 (2011).

    Article  Google Scholar 

  13. X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Science 327, 1631 (2010).

    Article  Google Scholar 

  14. X.-M. Bai, L.J. Vernon, R.G. Hoagland, A.F. Voter, M. Nastasi, and B.P. Uberuaga, Phys. Rev. B 85, 214103 (2012).

    Article  Google Scholar 

  15. F.J. Pérez-Pérez and R. Smith, Nucl. Instrum. Methods Phys. Res. Sect. B 153, 136 (1999).

    Article  Google Scholar 

  16. F.J. Pérez-Pérez and R. Smith, Nucl. Instrum. Methods Phys. Res. Sect. B 164–165, 487 (2000).

    Article  Google Scholar 

  17. F.J. Pérez-Pérez and R. Smith, Nucl. Instrum. Methods Phys. Res. Sect. B 180, 322 (2001).

    Article  Google Scholar 

  18. R.E. Stoller, P.J. Kamenski, and Y.N. Osetsky, MRS Proc. 1125, 1125 (2008).

    Article  Google Scholar 

  19. L. Van Brutzel and E. Vincent-Aublant, J. Nucl. Mater. 377, 522 (2008).

    Article  Google Scholar 

  20. L. Van Brutzel, E. Vincent-Aublant, and J.M. Delaye, Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 267, 3013 (2009).

    Article  Google Scholar 

  21. X.-M. Bai and B.P. Uberuaga, Phil. Mag. 92, 1469 (2012).

    Article  Google Scholar 

  22. A. Moriani and F. Cleri, Phys. Rev. B 73, 214113 (2006).

    Article  Google Scholar 

  23. F. Gao, D. Chen, W. Hu, and W.J. Weber, Phys. Rev. B 81, 184101 (2010).

    Article  Google Scholar 

  24. N. Swaminathan, P.J. Kamenski, D. Morgan, and I. Szlufarska, Acta Mater. 58, 2843 (2010).

    Article  Google Scholar 

  25. N. Swaminathan, M. Wojdyr, D.D. Morgan, and I. Szlufarska, J. Appl. Phys. 111, 054918 (2012).

    Article  Google Scholar 

  26. E.A. Kenik and T.E. Mitchell, Philos. Mag. 32, 815 (1975).

    Article  Google Scholar 

  27. K. Nordlund, J. Wallenius, and L. Malerba, Nucl. Instrum. Methods Phys. Res. Sect. B 246, 322 (2006).

    Article  Google Scholar 

  28. R.E. Stoller and S.G. Guiriec, J. Nucl. Mater. 329–333, 1238 (2004).

    Article  Google Scholar 

  29. Y.N. Osetsky, A. Serra, B.N. Singh, and S.I. Golubov, Philos. Mag. A 80, 2131 (2000).

    Article  Google Scholar 

  30. E. Ruedl, P. Delavignette, and S. Amelinckx, Phys. Rev. Lett. 6, 530 (1961).

    Article  Google Scholar 

  31. M.F. Chisholm, A. Maiti, S.J. Pennycook, and S.T. Pantelides, Mater. Sci. Forum 294–296, 161 (1999).

    Article  Google Scholar 

  32. D. Nguyen-Manh, A.P. Horsfield, and S.L. Dudarev, Phys. Rev. B 73, 020101 (2006).

    Article  Google Scholar 

  33. N.D. Morelon, D. Ghaleb, J.M. Delaye, and L. Van Brutzel, Phil. Mag. 83, 1533 (2003).

    Article  Google Scholar 

  34. W. Jiang, H. Wang, I. Kim, Y. Zhang, and W.J. Weber, J. Mater. Res. 25, 2341 (2010).

    Article  Google Scholar 

  35. W. Jiang, H. Wang, I. Kim, I.T. Bae, G. Li, P. Nachimuthu, Z. Zhu, Y. Zhang, and W.J. Weber, Phys. Rev. B 80, 161301 (2009).

    Article  Google Scholar 

  36. F. Gao, W.J. Weber, and R. Devanathan, Nucl. Instrum. Methods Phys. Res. Sect. B 180, 176 (2001).

    Article  Google Scholar 

  37. X.Y. Liu, B.P. Uberuaga, M.J. Demkowicz, T.C. Germann, A. Misra, and M. Nastasi, Phys. Rev. B 85, 012103 (2012).

    Article  Google Scholar 

  38. K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, and T. Hartmann, Science 289, 748 (2000).

    Article  Google Scholar 

  39. K.E. Sickafus, R.W. Grimes, J.A. Valdez, A. Cleave, M. Tang, M. Ishimaru, S.M. Corish, C.R. Stanek, and B.P. Uberuaga, Nat. Mater. 6, 217 (2007).

    Article  Google Scholar 

  40. B.P. Uberuaga and X.-M. Bai, J. Phys. Condens. Matter 23, 435004 (2011).

    Article  Google Scholar 

  41. P. Nerikar, C.R. Stanek, S.R. Phillpot, S.B. Sinnott, and B.P. Uberuaga, Phys. Rev. B 81, 064111 (2010).

    Article  Google Scholar 

  42. A.J. Ardell, V. Ghetta, D. Gorse, D. Mazière, and V. Pontikis, eds., Materials Issues for Generation IV Systems (Dordrecht, the Netherlands: Springer, 2008).

    Google Scholar 

  43. B.J. Garrison, N. Winograd, J. Don, and E. Harrison, J. Chem. Phys. 69, 1440 (1978).

    Article  Google Scholar 

  44. M. Ghaly and R.S. Averback, Phys. Rev. Lett. 72, 364 (1994).

    Article  Google Scholar 

  45. R.E. Voskoboinikov, Nucl. Instrum. Methods Phys. Res. Sect. B (submitted).

  46. M.J. Demkowicz and R.G. Hoagland, Int. J. Appl. Mech. 1, 421 (2009).

    Article  Google Scholar 

  47. A. Misra, M. Demkowicz, X. Zhang, and R. Hoagland, JOM 59 (9), 62 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

X.M.B. thanks the Center for Materials Science of Nuclear Fuel (CMSNF) at Idaho National Laboratory (award # FWP 1356) and B.P.U. thanks the Center for Materials at Irradiation and Mechanical Extremes (CMIME) at Los Alamos National Laboratory (award # 2008LANL1026) for financial support. Both centers are part of the Energy Frontier Research Center (EFRC) program funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. This manuscript has been co-authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blas P. Uberuaga.

Additional information

Both the authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, XM., Uberuaga, B.P. The Influence of Grain Boundaries on Radiation-Induced Point Defect Production in Materials: A Review of Atomistic Studies. JOM 65, 360–373 (2013). https://doi.org/10.1007/s11837-012-0544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0544-5

Keywords

Navigation