Skip to main content
Log in

Formation of Naturally Deposited Film and Its Effect on Interfacial Heat Transfer during Strip Casting of Martensitic Steel

  • Heat Transfer Utilization in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A strip-casting simulator has been successfully developed to simulate the initial contacting conditions between the twin roller and melt during the strip-casting process, in which the peak/average heat flux, secondary dendrite arm space and cooling rate of the martensitic strip cast are similar to those observed in the actual strip caster. During the casting experiments, a layer of dark deposited film can be found on the substrate, whose composition is 69.66Mn-15.36O-11.03Fe-3.95Si (wt.%). The deposited film starts to melt during the 5th immersion experiment and the melting area of the film increases with the repeat of the immersion test. The presence of solid deposited film first impairs the interfacial heat transfer; however, with the accumulation of the deposited film, melting of the film occurs that enhances the interfacial heat fluxes due to the improved melt/substrate interfacial contact, as the cavities or air pockets between the melt and the substrate are gradually filled with the increasing of the melting area of the deposited film. Compared with substrate roughness, the effect of the deposited film on heat transfer is more significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Ge, M. Isac, and R. Guthrie, ISIJ Int. 52, 2109 (2012).

    Article  Google Scholar 

  2. N. Zapuskalov, ISIJ Int. 43, 1115 (2003).

    Article  Google Scholar 

  3. S. Ge, M. Isac, and R. Guthrie, ISIJ Int. 53, 729 (2013).

    Article  Google Scholar 

  4. A. Maleki, A. Taherizadeh, and N. Hosseini, ISIJ Int. 57, 1 (2017).

    Article  Google Scholar 

  5. M. Ferry, Direct Strip Casting of Metals and Alloys (Cambridge: Woodhead Publishing, 2006).

    Book  Google Scholar 

  6. R. Wechsler, Scand. J. Metall. 32, 58 (2003).

    Article  Google Scholar 

  7. P. Campbell, W. Blejde, R. Mahapatra, R. Wechsler, and G. Gillen, Iron Steel Technol. 2, 56 (2005).

    Google Scholar 

  8. Z. Wang, K. Carpenter, Z. Chen, and C. Killmore, Mater. Sci. Eng. A 700, 234 (2017).

    Article  Google Scholar 

  9. K. Xie, L. Yao, C. Zhu, J. Cairney, C. Killmore, F. Barbaro, J. Williams, and S. Ringer, Metall. Mater. Trans. A 42, 2199 (2011).

    Article  Google Scholar 

  10. P. Felfer, C. Killmore, J. Williams, K. Carpenter, S. Ringer, and J. Cairney, Acta Mater. 60, 5049 (2012).

    Article  Google Scholar 

  11. C. Killmore, H. Kaul, J. Burg, K. Carpenter, J. Williams, D. Edelman, P. Campbell and W. Blejde, The 3rd International Conference on Thermo-Mechanical Processing of Steels, Padova, Italy(2008), p. 16 .

  12. K. Xie, S. Shrestha, P. Felfer, J. Cairney, C. Killmore, K. Carpenter, and S. Ringer, Mater. Trans. A 44, 848 (2013).

    Article  Google Scholar 

  13. L. Strezov and J. Herbertson, ISIJ Int. 38, 959 (1998).

    Article  Google Scholar 

  14. N. Phinichka, (Ph.D. dissertation, Carnegie Mellon University, 2001)

  15. P. Nolli, (Ph.D. dissertation, Carnegie Mellon University, 2007)

  16. L. Strezov, J. Herbertson, and G. Belton, Metall. Mater. Trans. B 31, 1023 (2000).

    Article  Google Scholar 

  17. P. Misra, (Ph.D. dissertation, Carnegie Mellon University, 2002)

  18. W. Wang, C. Zhu, C. Lu, J. Yu, and L. Zhou, Metall. Mater. Trans. A 49, 5524 (2018).

    Article  Google Scholar 

  19. C. Lu, W. Wang, J. Zeng, C. Zhu, and J. Chang, Metall. Mater. Trans. B 50, 77 (2019).

    Article  Google Scholar 

  20. C. Zhu, W. Wang, J. Zeng, C. Lu, L. Zhou, and J. Chang, ISIJ Int. 59, 880 (2019).

    Article  Google Scholar 

  21. R. Tavares, M. Isac, F. Hamel, and R. Guthrie, Metall. Mater. Trans. B 32, 55 (2001).

    Article  Google Scholar 

  22. C. Zhu, W. Wang, and C. Lu, J. Alloys Compd. 770, 631 (2019).

    Article  Google Scholar 

  23. T. Evans and L. Strezov, Metall. Mater. Trans. B 31, 1081 (2000).

    Article  Google Scholar 

  24. P. Nolli and A. Cramb, Metall. Mater. Trans. B 39, 56 (2008).

    Article  Google Scholar 

  25. P. Misra, N. Phinichka, and A. Cramb, Iron Steelmak. 30, 46 (2003).

    Google Scholar 

  26. P. Nolli, D. Choo, and A. Cramb, Iron Steel Technol. 1, 117 (2004).

    Google Scholar 

  27. Y. Yu, A. Cramb, R. Heard, Y. Fang, and J. Cui, ISIJ Int. 46, 1427 (2006).

    Article  Google Scholar 

  28. K. Mukunthan, P. Hodgson, P. Sellamuthu, L. Strezov, Y. Durandet, and N. Stanford, ISIJ Int. 53, 1803 (2013).

    Article  Google Scholar 

  29. K. Mukunthan, P. Hodgson, L. Strezov, and N. Stanford, ISIJ Int. 53, 2152 (2013).

    Article  Google Scholar 

  30. M. Ha, J. Choi, S. Jeong, H. Moon, T. Kang, and S. Lee, Metall. Mater. Trans. A 33, 1487 (2002).

    Article  Google Scholar 

  31. P. Nolli and A. Cramb, Iron Steel Technol. 3, 169 (2006).

    Google Scholar 

  32. H. Mizukami, Y. Nagakura, and T. Kusakawa, Tetsu-to-Hagane 75, 1308 (1989).

    Article  Google Scholar 

  33. L. Zhou and W. Wang, JOM 66, 1595 (2014).

    Article  Google Scholar 

  34. H. Zhang, W. Wang, F. Ma, and L. Zhou, Metall. Mater. Trans. B 46, 2361 (2015).

    Article  Google Scholar 

  35. P. Lyu, W. Wang, and H. Zhang, Metall. Mater. Trans. B 48, 247 (2017).

    Article  Google Scholar 

  36. P. Lyu, W. Wang, X. Long, K. Zhang, E. Gao, and R. Qin, Metall. Mater. Trans. B 49, 78 (2018).

    Article  Google Scholar 

  37. J. Beck, IHCP1D: A Program for Calculating Surface Heat Fluxes from Transient Temperatures Inside Solids (Houston: Beck Engineering Consultants Company, 1997).

    Google Scholar 

  38. K. Pursell, (M.E. dissertation, Missouri University of Science and Technology, 2015)

  39. T. Mizoguchi and K. Miyazawa, ISIJ Int. 35, 771 (1995).

    Article  Google Scholar 

  40. K. Hirata, O. Umezawa, and K. Nagai, Mater. Trans. 43, 305 (2002).

    Article  Google Scholar 

  41. M. Ha, W. Kim, H. Moon, B. Lee, and S. Lee, Metall. Mater. Trans. A 39, 1087 (2008).

    Article  Google Scholar 

  42. A. Suzuki, T. Suzuki, Y. Nagaoka, and Y. Iwata, J. Jpn. Inst. Met. 32, 1301 (1968).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from National Science Foundation of China (U1760202), Hunan Scientific Technology projects (2018RS3022, 2018WK2051), and the Hunan Provincial Innovation Foundation for Postgraduate (CX20190110) are great acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, P., Wang, W., Qian, H. et al. Formation of Naturally Deposited Film and Its Effect on Interfacial Heat Transfer during Strip Casting of Martensitic Steel. JOM 72, 1910–1919 (2020). https://doi.org/10.1007/s11837-020-04049-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04049-z

Navigation