Skip to main content
Log in

Ni-based superalloys for turbine discs

  • Overview
  • Hot Working Superalloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Superalloys have been developed for specific, specialized properties and applications. One of the main applications for nickel-based superalloys is gas-turbine-engine disc components for land-based power generation and aircraft propulsion. Turbine engines create harsh environments for materials due to the high operating temperatures and stress levels. Hence, as described in this article, many alloys used in the high-temperature turbine sections of these engines are very complex and highly optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fulton, Gas Turbine World (May–June 1994), pp. 52–56.

  2. B. Gunston, The Development of Jet and Turbine Aero Engines (Sparkford, U.K.: Patrick Stephens Ltd., 1996).

    Google Scholar 

  3. D. DeMania et al., “Influence of Grain Boundary Elements and Refractory Element Chemistries on the Properties of a Nickel-Base Superalloy Disk Material” (Paper presented at AeroMat’96, Dayton, Ohio, July 1996).

  4. R. Noel, D. Furrer, and J. Lemsky, Proceedings of the 3rd ASM-International Paris Conference (Materials Park, OH: ASM, 1997).

    Google Scholar 

  5. G. Vroman, American Metal Market (October 1, 1998), pp. 10A–11A.

  6. J.C. Williams, Acta Metallurgica Sinica, 9 (6) (December 1996), p. 407.

    Google Scholar 

  7. H.-J. Fecht et al., “Schaufeln und Scheiben in Gasturbinen—Werkstoff und Bauteil Verhalten,” Abschlussbereicht, TU-Berlin (1997).

  8. G. Shen and D. Furrer, Proceedings of the 4th International Precision Forging Conference (Columbus, OH, 1998).

  9. Metallurgia (June 1998), p. FT25.

  10. K.-M. Chang, M.F. Henry, and M.G. Benz, JOM, 42 (12) (1990), pp. 29–35.

    CAS  Google Scholar 

  11. Balaji et al., Proceedings of the North American Forging Technology Conference (1994).

  12. G. Shen, S.L. Semiatin, and R. Shivpuri, Met. Trans. A, 26A (1995), pp. 1795–1803.

    CAS  Google Scholar 

  13. G. Shen, J. Rollins, and D. Furrer, Superalloys 1996, eds. R.D. Kissinger et al. (Warrendale, PA: TMS, 1996), pp. 613–620.

    Google Scholar 

  14. T. Furman and R. Shankar, Advanced Materials and Processes (September 1998), p. 45.

  15. G. Muralidharan and R.G. Thompson, Scripta Mat., 36 (7) (1997), pp. 755–761.

    Article  CAS  Google Scholar 

  16. N.S. Stoloff, Superalloys II, ed. C. Sims, N. Stoloff, and W. Hagel (New York: John Wiley & Sons, 1987), pp. 61–96.

    Google Scholar 

  17. E. Nembach and G. Neite, Progress in Materials Science, 29 (1985), pp. 177–319.

    Article  CAS  Google Scholar 

  18. R.A. Ricks, A.J. Porter, and R.C. Ecob, Acta Met., 31 (1983), pp. 43–53.

    Article  CAS  Google Scholar 

  19. L. Muller, U. Glatzel, and M. Feller-Kniepmeier, Acta Metall., Mater., 40 (6) (1992), pp. 1321–1327.

    Article  Google Scholar 

  20. I.L. Svetlov et al., Scripta Met., 26 (1992), pp. 1352–1358.

    Google Scholar 

  21. N. Gayrand et al., Journal De Physique IV, Colloque C7, 3 (November 1993), pp. 271–276.

    Google Scholar 

  22. P.R. Bhowal, E.F. Wright, and E.L. Raymond, Met. Trans. A, 21A (1990), pp. 1709–1717.

    CAS  Google Scholar 

  23. M.L. Macia and T.H. Sanders, Jr., Proceedings of the 2nd International Conference on Heat-Resistant Materials (Materials Park, OH: ASM, 1995), pp. 163–170.

    Google Scholar 

  24. C.A. Klepser, Scripta Met., 33 (4) (1995), pp. 589–596.

    Article  CAS  Google Scholar 

  25. J.J. Schirra and S.H. Goetschius, Superalloys 1992, eds. S.D. Antolovich et al. (Warrendale, PA: TMS, 1992), pp. 437–446.

    Google Scholar 

  26. E.H. Van Der Molen, J.M. Oblak, and O.H. Kriege, Met. Trans., 2 (1971), pp. 1627–1633.

    Google Scholar 

  27. R.D. Kissinger, in Ref. 13, pp. 687–695.

    Google Scholar 

  28. R.A. Wallis et al., AGARD Conference Proceedings No. 426 (Cesme, Turkey: NATO, 1987).

    Google Scholar 

  29. M. Chang, A.K. Koul, and C. Cooper, in Ref. 13, pp. 677–685.

    Google Scholar 

  30. Y. Zhang and F.D.S. Marquis, in Ref. 13, pp. 391–399.

    Google Scholar 

  31. R.P. Wahi et al., Acta Materialia, 45 (8) (1997), pp. 3143–3154.

    Article  Google Scholar 

  32. O. Myagawa et al., Proceedings of the Third International Symposium on Metallurgy and Manufacturing of Superalloys (Warrendale, PA: TMS, 1976), pp. 245–254.

    Google Scholar 

  33. A.K. Koul and R. Thamburaj, Met. Trans. A, 16A (January 1985), pp. 17–26.

    CAS  Google Scholar 

  34. A.K. Koul and G.H. Gessinger, Acta Met., 31 (7) (1983), pp. 1061–1069.

    Article  CAS  Google Scholar 

  35. J.M. Larson and S. Floreen, Met. Trans. A, 8A (1977), pp. 51–55.

    CAS  Google Scholar 

  36. M. Yoshiba, Proceedings of the Fifth International Conference on Creep of Materials (1992), pp. 51–59.

  37. H.F. Merrick and S. Floreen, Met. Trans. A, 9A (1978), pp. 231–236.

    CAS  Google Scholar 

  38. M.F. Henry et al., Met. Trans. A, 24A (1993), pp. 1733–1743.

    CAS  Google Scholar 

  39. R.A. Wallis and I.W. Craighead, 47 (10) (1995), pp. 69–71.

  40. R.I. Ramakrishnan, Proceedings of the First International Conference on Quenching & Control of Distortion (Materials Park: ASM, 1992), pp. 235–242.

    Google Scholar 

  41. K.-M. Chang, Acta Metallurgica Sinica, 9 (1996), pp. 467–471.

    CAS  Google Scholar 

  42. K.-M. Chang, Proceedings of 7th International Symposiumon Physical Simulation of Casting, Hot Rolling and Welding (Tokyo: National Research Institute for Metals, 1997), pp. 509–512.

    Google Scholar 

  43. C.T. Sims, Superalloys II (New York: John Wiley & Sons, 1987), pp. 217–240.

    Google Scholar 

  44. N. Saunders, in Ref. 13, pp. 101–110.

    Google Scholar 

  45. N. Saunders, Phil. Trans. R. Soc. Lond. A, 351 (1995), pp. 543–561.

    Article  CAS  Google Scholar 

  46. J.F. Radavich, Superalloys 718, 625 and 706 and Various Derivatives, ed. E.A. Loria (Warrendale, PA: TMS, 1997), pp. 409–415.

    Google Scholar 

  47. J.F. Radavich et al., unpublished research.

  48. J.M. Hyzak and S.H. Reichman, Advances in High Temperature Structural Materials and Protective Coatings ed. A.K. Koul et al. (Ottawa, Canada: Nat. Res. Council of Canada, 1994), pp. 126–146.

    Google Scholar 

  49. L.A. Jackman, G.E. Maurer, and S. Widge, Advanced Materials & Processes (5) (1993), pp. 18–25.

  50. W. Eisen, Proceeding of the European Conference on P/M Materials (Birmingham, U.K.: EPMA, 1995).

    Google Scholar 

  51. L.W. Lherbier and W.B. Kent, Int. J. of Powder Metallurgy, 26 (2) (April 1990), pp. 131–137.

    Google Scholar 

  52. A. Lawley, MICON 86 (Philadelphia, PA: ASTM, 1986), pp. 183–201.

    Google Scholar 

  53. G.S. Garibov, Proceedings of the PM’94 Conference (Paris, France: EPMA, 1994), pp. 2039–2043.

    Google Scholar 

  54. A.J. DeRidder and R. Koch, MICON 78 (Philadelphia, PA: ASTM, 1978), pp. 547–563.

    Google Scholar 

  55. J.L. Bartos, MICON 78 (Philadelphia, PA: ASTM, 1978), pp. 564–577.

    Google Scholar 

  56. R. Thamburaj et al., Powder Metallurgy, 27 (3) (1984), pp. 169–180.

    CAS  Google Scholar 

  57. G.S. Garibov, Advances in Powder Metallurgy and Particulate Materials—1996, Part 5-A (Princeton, NJ: MPIJ, 1996), pp. 192–219.

    Google Scholar 

  58. L.S. Buslavskiy et al., Technology of Light Alloys—Vol. 2 (Moscow, Russia: VILS, 1997), pp. 24–26.

    Google Scholar 

  59. I.S. Velikanova et al., in Ref. 58, pp. 34–37.

    Google Scholar 

  60. G.S. Garibov et al., in Ref. 58, pp. 26–31.

    Google Scholar 

  61. G.S. Garibov, in Ref. 58, pp. 54–60.

    Google Scholar 

  62. V.T. Musienko, Proceedings of PM’94 Conference (Paris, France: EPMA, 1994), pp. 2045–2048.

    Google Scholar 

  63. G.A.J. Hack, J.W. Eggar, and C.H. Symonds, Proceedings Powder Metallurgy Superalloys Conference (Zurich, Switzerland: 1980), pp. 20.1–20.50.

  64. B.I. Boris, G.S. Genrikh, and F.C. Oleg, Proceedings of the International Conference on Hot Isostatic Pressing (Princeton, NJ: AMPI-MPIF, 1996), pp. 39–49.

    Google Scholar 

  65. G.S. Garibov, private communications (1997).

  66. D.D. Vaulin and O.N. Vlasova, in Ref. 58, pp. 37–41.

    Google Scholar 

  67. J.Y. Guedou, J.C. Lautridou, and Y. Honnorat, J. of Mat. Eng. and Performance, 2 (1993), pp. 551–556.

    CAS  Google Scholar 

  68. F.E. Sczerzenie and G.E. Maurer, Superalloys 1984, ed. M. Gell et al. (Warrendale, PA: TMS, 1984), pp. 573–582.

    Google Scholar 

  69. K.A. Green, J.A. Lemsky, and R.M. Gasior, in Ref. 13, pp. 697–703.

    Google Scholar 

  70. G. Kappler et al., 4th European Propulsion Forum 1993 (Bath, U.K.: 1993), pp. 9.1–9.9.

  71. S.W. Kandebo, Aviation Week & Space Technology (December 6, 1993), pp. 53–54.

  72. D.J. Bryant and G. McIntosh, “The Manufacture and Evaluation of a large Turbine Disc in Cast and Wrought Alloy 720LI,” in Ref. 13, pp. 713–722.

    Google Scholar 

  73. J.F. Radavich and J. Hyzak, “Effect of Processing and Thermal Treatment on Alloy 720,” Proceedings of the Tenth International Conference on Vacuum Metallurgy, Vol. 1, Specialty Melting (Beijing, China: 1990).

  74. S. Bashir and M. Thomas, Superalloys 1992, eds. S.D. Antolovich et al. (Warrendale, PA: TMS, 1992), pp. 747–755.

    Google Scholar 

  75. J.M Hyzak et al., Superalloys 1992, eds. S.D. Antolovich et al. (Warrendale, PA: TMS, 1992), pp. 93–102.

    Google Scholar 

  76. K.R. Bain et al., Superalloys 1988, eds. S. Reichman et al. (Warrendale, PA: TMS, 1988), pp. 13–22.

    Google Scholar 

  77. H. Hattori et al., in Ref. 13, pp. 705–711.

    Google Scholar 

  78. I. Tsuji and H. Itoh, Trans. of the Iron and Steel Inst. of Japan, 22 (4) (1982), p. B-112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

David Furrer earned his M.S. in metallurgical engineering at the University of Wisconsin-Madison in 1988. He is currently manager of advanced materials and process technology at Ladish Co., Inc.

Hans Fecht earned his Ph.D. in materials science at Universität Saarbrucken in 1984. He is currently professor, Abteilung Werkstoffe der Elektrotechnik-Materialwissenschaften, at the Universität Ulm, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furrer, D., Fecht, H. Ni-based superalloys for turbine discs. JOM 51, 14–17 (1999). https://doi.org/10.1007/s11837-999-0005-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-999-0005-y

Keywords

Navigation