Skip to main content
Log in

Vector spaces of non-extendable holomorphic functions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we analyze the linear structure of the family H e (G) of holomorphic functions on a domain G of the complex plane that are not analytically continuable beyond the boundary of G. We prove that H e (G) contains, except for zero, a dense algebra; and, under appropriate conditions, the subfamily of H e (G) consisting of boundary-regular functions contains dense vector spaces with maximal dimension as well as infinite dimensional closed vector spaces and large algebras. We also consider the case in which G is a domain of existence in a complex Banach space. The results obtained complete or extend a number of previous results by several authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill Book Co., New York, 1978.

    Google Scholar 

  2. H. Alexander, Analytic functions on Banach spaces, doctoral dissertation, University of California, Berkeley, 1968.

    Google Scholar 

  3. T. R. Alves, Lineability and algebrability of the set of holomorphic functions with a given domain of existence, Studia Math. 220 (2014), 157–167.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. M. Ansemil and S. Ponte, Metrizability of spaces of holomorphic functions with the Nachbin topology, J. Math. Anal. Appl. 334 (2007), 1146–1151.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Aron, D. García, and M. Maestre, Linearity in non-linear problems, RACSAMRev. R. Acad. Cien. Exactas. FTS. Nat. Ser. A Mat. 95 (2001), 7–12.

    MathSciNet  MATH  Google Scholar 

  6. R. Aron, F. J. García-Pacheco, D. Pérez-García, and J. B. Seoane-Sepúlveda, On dense-lineability of sets of functions on R, Topology 48 (2009), 149–156.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Aron, D. Pérez-García, and J. B. Seoane-Sepúlveda, Algebrability of the set of nonconvergent Fourier series, Studia Math. 175 (2006), 83–90.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. M. Aron, V. I. Gurariy, and J. B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005), 795–803.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Balcerzak, A. Bartoszewicz, and M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), 263–269.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Bartoszewicz, M Bienias, M. Filipczak, and S. Głąb, Strong c-algebrability of strong Sierpiński–Zygmund, smooth nowhere analytic and other sets of functions, J. Math. Anal. Appl. 412 (2014), 620–630.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Bartoszewicz and S. Głąb, Strong algebrability of sets of sequences and functions, Proc. Amer. Math. Soc. 141 (2013), 827–835.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Bayart, Topological and algebraic genericity of divergence and universality, Studia Math. 167 (2005), 161–181.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Bernal-González, Linear Kierst–Szpilrajn theorems, Studia Math. 166 (2005), 55–69.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Bernal-González, Linear structure of weighted holomorphic non-extendibility, Bull. Austral. Math. Soc. 73 (2006), 335–344.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Bernal-González, Dense-lineability in spaces of continuous functions, Proc. Amer. Math. Soc. 136 (2008), 3163–3169.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Bernal-González, Algebraic genericity of strict order integrability, Studia Math. 199 (2010), 279–293.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Bernal-González, M. C. Calderón-Moreno, and W. Luh, Large linear manifolds of noncontinuable boundary-regular holomorphic functions, J. Math. Anal. Appl. 341 (2008), 337–345.

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Bernal-González and M. Ordó˜nez Cabrera, Lineability criteria, with applications, J. Funct. Anal. 266 (2014), 3997–4025.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Bernal-González, D. Pellegrino, and J. B. Seoane-Sepúlveda, Linear subsets of nonlinear sets in topological vector spaces, Bull. Amer. Math. Soc. (N. S.) 51 (2014), 71–130.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Bieberbach, Analytische Fortsetzung, Springer-Verlag, Berlin, 1955.

    Book  MATH  Google Scholar 

  21. S. B. Chae, Holomorphy and Calculus in Normed Spaces, Marcel Dekker, New York, 1985.

    MATH  Google Scholar 

  22. J. Chmielowski, Domains of holomorphy of type Ak, Proc. Roy. Irish Acad. Sect. A 80 (1980), 97–101.

    MathSciNet  MATH  Google Scholar 

  23. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, Cambridge, 1966.

    Book  MATH  Google Scholar 

  24. J. B. Conway, Functions of One Complex Variable, Springer-Verlag, New York, 1986.

    Google Scholar 

  25. S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag London, London, 1999.

    Book  MATH  Google Scholar 

  26. D. Gaier, Lectures on Complex Approximation, Birkhäuser Boston, Boston, 1987.

    Book  MATH  Google Scholar 

  27. P. M. Gauthier and W. Hengartner, Complex approximation and simultaneous interpolation on closed sets, Canad. J. Math. 29 (1977), 701–706.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Gurariy and L. Quarta, On lineability of sets of continuous functions, J. Math. Anal. Appl. 294 (2004), 62–72.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Hille, Analytic Function Theory, II, Chelsea Publishing Company, New York, 1987.

    MATH  Google Scholar 

  30. M. Jarnicki and P. Pflug, Extension of Holomorphic Functions, Walter de Gruyter, Berlin, 2000.

    Book  MATH  Google Scholar 

  31. J. P. Kahane, Une remarque sur les séries de Rademacher et les domaines d’holomorphie, Colloq. Math. 19 (1968), 107–110.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. P. Kahane, Baire’s category theorem and trigonometric series, J. Analyse Math. 80 (2000), 143–182.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Kaup and B. Kaup, Holomorphic Functions of Several Variables, Walter de Gruyter, Berlin and New York, 1983.

    Book  MATH  Google Scholar 

  34. St. Kierst and D. Szpilrajn, Sur certaines singularités des fonctions analytiques uniformes, Fundamenta Math. 21 (1933), 276–294.

    Article  MATH  Google Scholar 

  35. D. Kitson and R. M. Timoney, Operator ranges and spaceability, J. Math. Anal. Appl. 378 (2011), 680–686.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. G. Krantz, Function Theory of Several Complex Variables, John Wiley and Sons, New York, 1982.

    MATH  Google Scholar 

  37. P. Lelong, Fonctions plurisuousharmoniques et ensembles polaires sur une algèbre de fonctions holomorphes, Séminaire Pierre Lelong (Analyse) année 1969, Springer-Verlag, Berlin, 1970, pp. 1–20.

    MATH  Google Scholar 

  38. C. Ryll-Nardzewski and H. Steinhaus, Sur les séries de Taylor, StudiaMath. 12 (1951), 159–165.

    MATH  Google Scholar 

  39. W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.

    MATH  Google Scholar 

  40. J. Siciak, Highly noncontinuable functions on polynomially convex sets, Univ. Iag. Acta Math. 25 (1985), 95–107.

    MathSciNet  MATH  Google Scholar 

  41. M. Valdivia, Interpolation in spaces of holomorphic mappings with asymptotic expansions, Proc. Roy. Irish Acad. Sect. A 91 (1991), 7–38.

    MathSciNet  MATH  Google Scholar 

  42. M. Valdivia, The space H(Ω, (z j)) of holomorphic functions, J. Math. Anal. Appl. 337 (2008), 821–839.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Valdivia, Spaces of holomorphic functions in regular domains, J Math. Anal. Appl. 350 (2009), 651–662.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Wilansky, Semi-Fredholm maps of FK spaces, Math. Z. 144 (1975), 9–12.

    Article  MathSciNet  MATH  Google Scholar 

  45. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Bernal-González.

Additional information

To Professor José Bonet Solves on His 60th Birthday

The author was partially supported by the Plan Andaluz de Investigación de la Junta de Andalucía FQM-127 Grant P08-FQM-03543 and by MEC Grant MTM2015-65242-C2-1-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal-González, L. Vector spaces of non-extendable holomorphic functions. JAMA 134, 769–786 (2018). https://doi.org/10.1007/s11854-018-0025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0025-z

Navigation