Skip to main content
Log in

Jacobians with a vanishing theta-null in genus 4

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we prove a conjecture of Hershel Farkas [11] that if a 4-dimensional principally polarized abelian variety has a vanishing theta-null, and the Hessian of the theta function at the corresponding 2-torsion point is degenerate, the abelian variety is a Jacobian.

We also discuss possible generalizations to higher genera, and an interpretation of this condition as an infinitesimal version of Andreotti and Mayer’s local characterization of Jacobians by the dimension of the singular locus of the theta divisor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Annali della Scuola Normale Superiore di Pisa (3) 21 (1967), 189–238.

    MathSciNet  MATH  Google Scholar 

  2. E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves. Vol. I., Grundlehren der mathematischen Wissenschaften, 267, Springer-Verlag, New York 1985.

    MATH  Google Scholar 

  3. A. Beauville, Prym varieties and the Schottky problem, Inventiones Mathematicae 41 (1977), 149–196.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Bertrand and W. Zudilin, On the transcendence degree of the differential field generated by Siegel modular forms, Journal für die Reine und Angewandte Mathematik 554 (2003), 47–68.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Casalaina-Martin, Cubic threefolds and abelian varieties of dimension five. II, Mathematische Zeitschrift, to appear.

  6. O. Debarre, Sur les variétés abéliennes dont le diviseur thêta est singulier en codimension 3, Duke Mathematical Journal 56 (1988), 211–273.

    MathSciNet  Google Scholar 

  7. O. Debarre, Le lieu des variétés abéliennes dont le diviseur thêta est singulier a deux composantes, Annales Scientifiques de l’ÉNS 25 (1992), 687–708.

    MathSciNet  MATH  Google Scholar 

  8. O. Debarre, The Schottky problem: an update, in Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Mathematical Sciences Research Institute Publications 28, Cambridge University Press, Cambridge, 1995, pp. 57–64.

    Google Scholar 

  9. R. Donagi, The tetragonal construction, American Mathematical Society. Bulletin, 4 (1981), 181–185.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Ein, and R. Lazarsfeld, Singularities of theta divisors and the birational geometry of irregular varieties. Journal of the American Mathematical Society 10 (1997) 1, 243–258.

    Article  MathSciNet  Google Scholar 

  11. H. Farkas, Vanishing thetanulls and Jacobians, in The geometry of Riemann surfaces and abelian varieties, Contemporary Mathematics, 397, American Mathematical Society, Providence, RI, 2006, pp. 37–53.

    Google Scholar 

  12. H. Farkas and H. Rauch, Period relations of Schottky type on Riemann surfaces, Annals of Mathematics 92 (1970), 434–461.

    Article  MathSciNet  Google Scholar 

  13. E. Freitag, Singular Modular Forms and Theta Relations, Lecture Notes in Mathematics, 1487, Springer-Verlag, Berlin 1991.

    MATH  Google Scholar 

  14. B. van Geemen and G. van der Geer, Kummer varieties and the moduli spaces of abelian varieties, American Journal of Mathematics 108 (1986), 615–641.

    Article  MathSciNet  MATH  Google Scholar 

  15. B. van Geemen, The Schottky problem and second order theta functions, in Workshop on Abelian Varieties and Theta Functions (Morelia, 1996), Aportaciones Matemáticas: Investigación 13 Sociedad Matematica Mexicana, México, 1998, pp. 41–84.

    Google Scholar 

  16. M. Green, Quadrics of rank four in the ideal of the canonical curve, Inventiones Mathematicae 75 (1984), 85–104.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Grushevsky, R. Salvati Manni, Two generalizations of Jacobi’s derivative formula, Mathematical Research Letters, 12 (2005), 921–932

    MathSciNet  MATH  Google Scholar 

  18. J.-I. Igusa, Theta functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972.

    MATH  Google Scholar 

  19. J.-I. Igusa, On the irreducibility of Schottky’s divisor, Journal of the Faculty of Science, University Tokyo, Sect. I A 28 (1981), 531–545.

    MathSciNet  MATH  Google Scholar 

  20. E. Izadi, The geometric structure of A 4, the structure of the Prym map, double solids and Γ 00-divisors, Journal für die Reine und Angewandte Mathematik 462 (1995), 93–158.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Kempf, On the geometry of a theorem of Riemann, Annals of Mathematics 98 (1973), 178–185.

    Article  MathSciNet  Google Scholar 

  22. D. Mumford, Tata lectures on theta. II: Jacobian theta functions and differential equations. Progress in Mathematics, 43. Birkhäuser, Boston-Basel-Stuttgart.

  23. R. Salvati Manni, On Jacobi’s formula in the not necessarily azygetic case, American Journal of Mathematics 108 (1986), 953–972.

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Smith and Varley Components of the locus of singular theta divisors of genus 5, Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Mathematics, 1124, Springer, Berlin, 1985, pp. 338–416.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Grushevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grushevsky, S., Salvati Manni, R. Jacobians with a vanishing theta-null in genus 4. Isr. J. Math. 164, 303–315 (2008). https://doi.org/10.1007/s11856-008-0031-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-008-0031-4

Keywords

Navigation