Skip to main content
Log in

Structural stability and dynamic geometry: Some ideas on situated proofs

  • Analyses
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

In this paper we survey the historical and contemporary connections in mathematics between classical “conceptual” tools versus modern computing tools. In this process we highlight the interplay between the inductive and deductive, experimental and theoretical, and propose the notion of Situated proofs as a didactic tool for the teaching of geometry in the 21st century.

Kurzreferat

Dieser Artikel konfrontiert vor einem historischem und aktuellen Hintergrund überblicksartig die Spannung zwischen «klassischen» und modernen Computerwerkzengen. In diesem Zusammenhang wird das Zusammenspiel zwischen Induktion und Dekuktion, zwischen Experimentellem und Theorie herausgearbeitet, und für ein Konzept des kontextuellen Beweisens als didaktisches Werkzeug der Gemmetrielehre im 21. Jahrhundert plädiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V.I. (2000) Mathematics: Frontiers and Perspectives. American Mathematical Society.

  • Balacheff, N., Kaput, J. (1996). Computer-based learning environment in mathematics. In A. J. Bishop et al. (Eds.), International handbook of mathematical education (pp. 469–501). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Bailey, D. & Borwein, P. (2001), Mathematics Unlimited 2001 and Beyond. B. Engquist and W. Schmid (eds), Springer-Verlag.

  • Berger, M. (1998). Graphic calculators: An interpretative framekork. For the Learning of Mathematics, 18(2), 13–20.

    Google Scholar 

  • Bottazzini, U. (1986) The Higher Calculus: A History of Real and Complex analysis from Euler to Weierstrass. New York: Springer Verlag.

    Google Scholar 

  • Courant, R. & Robbins, H. (2001). Was ist mathematik? Springer-Verlag.

  • Donald, M. (2001). A Mind so rare. Norton, New York.

    Google Scholar 

  • Flegg, G. (1983). Numbers: Their history and meaning, Penguin.

  • Goldstein, C. (1999). La naissance du Nombre en Mesopotamie. La Recherche, L'Univers des Nombres (hors de serie).

  • Guin, D. & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: the case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.

    Article  Google Scholar 

  • Hilbert, D. & Cohn-Vossen, S (1999). Geometry and the Imagination. New York: Chelsea.

    Google Scholar 

  • Lakatos, I. (1976) Proofs and Refutations. Cambridge Univeristy Press.

  • Manin, Y. I. (1977). A course in mathematical logic, Springer-Verlag, New York.

    Google Scholar 

  • Moreno, L.A. & Block, D. (2002). Democratic Access to Powerful Mathematics in a Developing Country. In L.D. English (ed.) Handbook of International Research in Mathematics Education, (pp. 301–321) Lawrence Erlbaum & Associates.

  • Noss, R. & Hoyles, C. (1996). Windows on mathematical Meanings. Learning Cultures and Computers. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Pimm, D. (1995). Symbols and meanings in school mathematics. London: Routledge.

    Google Scholar 

  • Peitgen, Jürgen y Saupe (1992): Fractals for the Classroom vol. 1, New York: Springer-Verlag.

    Google Scholar 

  • Rabardel, P. (1995). Les hommes et les technologies. Approche cognitive des instruments contemporains. Paris: Armand Colin.

    Google Scholar 

  • Schmandt-Besserat, D. (1978). The Earliest Precursor of Writing. Scientific American (pp. 39–47).

  • Swicegood, G. (2004). The Morley trisector theorem. The Montana Mathematics Enthusiast, 1(2), 38–43.

    Google Scholar 

  • Varberg, D.E. (1985) Pick's Theorem Revisited, The American Mathematical Monthly 92(1985), pp 584–587.

    Article  Google Scholar 

  • von Glasersfeld, E. (1983) Learning as a constructive activity. In J. C. Bergeron and N. Herscovics (Eds.), Proceedings of the Firth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 41–69). Montreal: University of Montreal.

    Google Scholar 

  • Weyl, H. (1918). Raum-Zeit-Materie. Vorlesungen über allgemeine Relativitätstheorie, Berlin: Springer Verlag.

    Google Scholar 

  • Wittgenstein, L. (1978). Some Remarks on the Foundations of Mathematics. Cambridge, Massachusetts Institute of Technology Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Armella, L., Sriraman, B. Structural stability and dynamic geometry: Some ideas on situated proofs. Zentralblatt füur Didaktik der Mathematik 37, 130–139 (2005). https://doi.org/10.1007/s11858-005-0002-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-005-0002-8

ZDM-Classification

Navigation