Skip to main content

Advertisement

Log in

Diet, fatty acids, and regulation of genes important for heart disease

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as alpha-linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, are associated with decreased incidence and severity of coronary heart disease. Similarly, conjugated linoleic acids (CLAs), which are found in meat and dairy products, have beneficial effects against atherosclerosis, diabetes, and obesity. The effects of n3-PUFAs and CLAs are in contrast to fatty acids with virtually identical structures, such as linoleic acid and arachidonic acid (ie, n-6 PUFAs). This article discusses the possibility that cognate receptors exist for fatty acids or their metabolites that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with coronary heart disease. Three nuclear receptors are emphasized as fatty acid receptors that respond to dietary and endogenous ligands: peroxisome proliferator activated receptors, retinoid X receptors, and liver X receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Renaud S, Lanzmann-Petithory D: Coronary heart disease: dietary links and pathogenesis. Pub Health Nutr 2001, 4:459–474.

    CAS  Google Scholar 

  2. Hu FB, Willett WC: Optimal diets for prevention of coronary heart disease. JAMA 2002, 288:2569–2578.

    Article  PubMed  CAS  Google Scholar 

  3. Belury MA, Nickel KP, Bird CE, Wu Y: Dietary conjugated linoleic acid modulation of phorbol ester skin tumor promotion. Nutr Cancer 1996, 26:149–157.

    Article  PubMed  CAS  Google Scholar 

  4. Ip C, Chin SF, Scimeca JA, Pariza MW: Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res 1991, 51:6118–6124.

    PubMed  CAS  Google Scholar 

  5. Yang H, Glickman BW, de Boer JG: Sex-specific induction of mutations by PhIP in the kidney of male and female rats and its modulation by conjugated linoleic acid. Environ Mol Mutagen 2002, 40:116–121.

    Article  PubMed  CAS  Google Scholar 

  6. Lee KN, Kritchevsky D, Pariza MW: Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 1994, 108:19–25.

    Article  PubMed  CAS  Google Scholar 

  7. Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, et al.: Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem Biophys Res Commun 1998, 244:678–682.

    Article  PubMed  CAS  Google Scholar 

  8. Honkakoski P, Negishi M: Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem J 2000, 347:321–337.

    Article  PubMed  CAS  Google Scholar 

  9. Weatherman RV, Fletterick RJ, Scanlan TS: Nuclear-receptor ligands and ligand-binding domains. Annu Rev Biochem 1999, 68:559–581.

    Article  PubMed  CAS  Google Scholar 

  10. Kumar R, Thompson EB: The structure of the nuclear hormone receptors. Steroids 1999, 64:310–319.

    Article  PubMed  CAS  Google Scholar 

  11. Di Croce L, Okret S, Kersten S, et al.: Steroid and nuclear receptors. Villefranche-sur-Mer, France, May 25–27, 1999. EMBO J 1999, 18:6201–6210.

    Article  PubMed  Google Scholar 

  12. McDonnell DP, Vegeto E, Gleeson MA: Nuclear hormone receptors as targets for new drug discovery. Biotechnology (N Y) 1993, 11:1256–1261.

    CAS  Google Scholar 

  13. Wahli W, Martinez E: Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J 1991, 5:2243–2249.

    PubMed  CAS  Google Scholar 

  14. Khan SA, Vanden Heuvel JP: Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J Nutr Biochem 2003, 14:554–567.

    Article  PubMed  CAS  Google Scholar 

  15. Committee NRN: A unified nomenclature system for the nuclear receptor superfamily. Cell 1999, 97:161–163.

    Article  Google Scholar 

  16. Clarke SD, Jump DB: Polyunsaturated fatty acid regulation of hepatic gene transcription. J Nutr 1996, 126:1105S-1109S.

    PubMed  CAS  Google Scholar 

  17. Francis GA, Fayard E, Picard F, Auwerx J: Nuclear receptors and the control of metabolism. Annu Rev Physiol 2003, 65:261–311.

    Article  PubMed  CAS  Google Scholar 

  18. Wahli W: Peroxisome proliferator-activated receptors (PPARs): from metabolic control to epidermal wound healing. Swiss Med Wkly 2002, 132:83–91.

    PubMed  CAS  Google Scholar 

  19. Hihi AK, Michalik L, Wahli W: PPARs: transcriptional effectors of fatty acids and their derivatives. Cell Mol Life Sci 2002, 59:790–798.

    Article  PubMed  CAS  Google Scholar 

  20. Vanden Heuvel JP: Peroxisome proliferator-activated receptors: a critical link among fatty acids, gene expression and carcinogenesis. J Nutr 1999, 129:575S-580S.

    Google Scholar 

  21. Latruffe N, Vamecq J: Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism. Biochimie 1997, 79:81–94.

    Article  PubMed  CAS  Google Scholar 

  22. Gelman L, Fruchart JC, Auwerx J: An update on the mechanisms of action of the peroxisome proliferator- activated receptors (PPARs) and their roles in inflammation and cancer. Cell Mol Life Sci 1999, 55:932–943.

    Article  PubMed  CAS  Google Scholar 

  23. Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem 2000, 43:527–550.

    Article  PubMed  CAS  Google Scholar 

  24. Moya-Camarena SY, Vanden Heuvel JP, Blanchard SG, et al.: Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J Lipid Res 1999, 40:1426–1433.

    PubMed  CAS  Google Scholar 

  25. Moya-Camarena SY, Vanden Heuvel JP, Belury MA: Conjugated linoleic acid activates peroxisome proliferator-activated receptor alpha and beta subtypes but does not induce hepatic peroxisome proliferation in Sprague-Dawley rats. Biochim Biophys Acta 1999, 1436:331–342.

    PubMed  CAS  Google Scholar 

  26. Peters JM, Park Y, Gonzalez FJ, Pariza MW: Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferator-activated receptor alpha- null mice. Biochim Biophys Acta 2001, 1533:233–242.

    PubMed  CAS  Google Scholar 

  27. Ziouzenkova O, Perrey S, Asatryan L, et al.: Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci U S A 2003, 100:2730–2735.

    Article  PubMed  CAS  Google Scholar 

  28. Chawla A, Lee CH, Barak Y, et al.: PPARdelta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci U S A 2003, 100:1268–1273.

    Article  PubMed  CAS  Google Scholar 

  29. Cowart LA, Wei S, Hsu MH, et al.: The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J Biol Chem 2002, 277:35105–35112.

    Article  PubMed  CAS  Google Scholar 

  30. Krey G, Braissant O, Fu LH, et al.: Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator- dependent receptor ligand assay. Mol Endocrinol 1997, 11:779–791.

    Article  PubMed  CAS  Google Scholar 

  31. Yu K, Bayona W, Kallen CB, et al.: Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 1995, 270:23975–23983.

    Article  PubMed  CAS  Google Scholar 

  32. Spiegelman BM: PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998, 47:507–514.

    Article  PubMed  CAS  Google Scholar 

  33. Barak Y, Nelson MC, Ong ES, et al.: PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999, 4:585–595.

    Article  PubMed  CAS  Google Scholar 

  34. Willson TM, Wahli W: Peroxisome proliferator-activated receptor agonists. Curr Opin Chem Biol 1997, 1:235–241.

    Article  PubMed  CAS  Google Scholar 

  35. DeGrazia MJ, Thompson J, Vanden Heuvel JP, Peterson BR: Synthesis of a high-affinity fluorescent ligand PPARg ligand for high-throughput fluorescence polarization assays. Bioorgan Medicinal Chem 2003, 11:4325–4332.

    Article  CAS  Google Scholar 

  36. Yu Y, Correll PH, Vanden Heuvel JP: Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPARgamma-dependent mechanism. Biochim Biophys Acta 2002, 1581:89–99.

    PubMed  CAS  Google Scholar 

  37. McIntyre TM, Pontsler AV, Silva AR, et al.: Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci U S A 2003, 100:131–136.

    Article  PubMed  CAS  Google Scholar 

  38. Davies SS, Pontsler AV, Marathe GK, et al.: Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor gamma ligands and agonists. J Biol Chem 2001, 276:16015–16023.

    Article  PubMed  CAS  Google Scholar 

  39. Peters JM, Lee SS, Li W, et al.: Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Mol Cell Biol 2000, 20:5119–5128.

    Article  PubMed  CAS  Google Scholar 

  40. Brun RP, Tontonoz P, Forman BM, et al.: Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev 1996, 10:974–984.

    PubMed  CAS  Google Scholar 

  41. Barbier O, Torra IP, Duguay Y, et al.: Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2002, 22:717–726.

    Article  PubMed  CAS  Google Scholar 

  42. Duval C, Chinetti G, Trottein F, et al.: The role of PPARs in atherosclerosis. Trends Mol Med 2002, 8:422–430.

    Article  PubMed  CAS  Google Scholar 

  43. Fruchart JC, Staels B, Duriez P: PPARS, metabolic disease and atherosclerosis. Pharmacol Res 2001, 44:345–352.

    Article  PubMed  CAS  Google Scholar 

  44. Vosper H, Khoudoli GA, Graham TL, Palmer CN: Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther 2002, 95:47–62.

    Article  PubMed  CAS  Google Scholar 

  45. Kersten S, Desvergne B, Wahli W: Roles of PPARs in health and disease. Nature 2000, 405:421–424.

    Article  PubMed  CAS  Google Scholar 

  46. Escher P, Wahli W: Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 2000, 448:121–138.

    PubMed  CAS  Google Scholar 

  47. Rocchi S, Auwerx J: Peroxisome proliferator-activated receptor-gamma: a versatile metabolic regulator. Ann Med 1999, 31:342–351.

    PubMed  CAS  Google Scholar 

  48. Schoonjans K, Staels B, Auwerx J: The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1996, 1302:93–109.

    PubMed  CAS  Google Scholar 

  49. Tontonoz P, Hu E, Graves RA, et al.: mPpar gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994, 8:1224–1234.

    PubMed  CAS  Google Scholar 

  50. Tontonoz P, Nagy L, Alvarez JG, et al.: PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998, 93:241–252.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang B, Berger J, Hu E, et al.: Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 1996, 10:1457–1466.

    Article  PubMed  CAS  Google Scholar 

  52. Kubota N, Terauchi Y, Miki H, et al.: PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell 1999, 4:597–609.

    Article  PubMed  CAS  Google Scholar 

  53. Ricote M, Huang JT, Welch JS, Glass CK: The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Leukocyte Biol 1999, 66:733–739.

    PubMed  CAS  Google Scholar 

  54. Lehmann JM, Lenhard JM, Oliver BB, et al.: Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997, 272:3406–3410.

    Article  PubMed  CAS  Google Scholar 

  55. de Urquiza AM, Liu S, Sjoberg M, et al.: Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000, 290:2140–2144.

    Article  PubMed  Google Scholar 

  56. Lengqvist J, De Urquiza AM, Bergman AC, et al.: Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand binding domain. Mol Cell Proteomics 2004, In press.

  57. Lemotte PK, Keidel S, Apfel CM: Phytanic acid is a retinoid X receptor ligand. Eur J Biochem 1996, 236:328–333.

    Article  PubMed  CAS  Google Scholar 

  58. Claudel T, Leibowitz MD, Fievet C, et al.: Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc Natl Acad Sci U S A 2001, 98:2610–2615.

    Article  PubMed  CAS  Google Scholar 

  59. Kastner P, Grondona JM, Mark M, et al.: Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 1994, 78:987–1003.

    Article  PubMed  CAS  Google Scholar 

  60. Lund EG, Menke JG, Sparrow CP: Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 2003, 23:1169–1177.

    Article  PubMed  CAS  Google Scholar 

  61. Millatt LJ, Bocher V, Fruchart JC, Staels B: Liver X receptors and the control of cholesterol homeostasis: potential therapeutic targets for the treatment of atherosclerosis. Biochim Biophys Acta 2003, 1631:107–118.

    PubMed  CAS  Google Scholar 

  62. Ou J, Tu H, Shan B, et al.: Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand- dependent activation of the LXR. Proc Natl Acad Sci U S A 2001, 98:6027–6032.

    Article  PubMed  CAS  Google Scholar 

  63. Pawar A, Botolin D, Mangelsdorf DJ, Jump DB: The role of liver X receptor-alpha in the fatty acid regulation of hepatic gene expression. J Biol Chem 2003, 278:40736–40743.

    Article  PubMed  CAS  Google Scholar 

  64. Miyata KS, McCaw SE, Patel HV, et al.: The orphan nuclear hormone receptor LXR alpha interacts with the peroxisome proliferator-activated receptor and inhibits peroxisome proliferator signaling. J Biol Chem 1996, 271:9189–9192.

    Article  PubMed  CAS  Google Scholar 

  65. Laffitte BA, Repa JJ, Joseph SB, et al.: LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A 2001, 98:507–512.

    Article  PubMed  CAS  Google Scholar 

  66. Joseph SB, Tontonoz P: LXRs: new therapeutic targets in atherosclerosis? Curr Opin Pharmacol 2003, 3:192–197.

    Article  PubMed  CAS  Google Scholar 

  67. Jaye M: LXR agonists for the treatment of atherosclerosis. Curr Opin Investig Drugs 2003, 4:1053–1058.

    PubMed  CAS  Google Scholar 

  68. Joseph SB, McKilligin E, Pei L, et al.: Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 2002, 99:7604–7609.

    Article  PubMed  CAS  Google Scholar 

  69. Chawla A, Barak Y, Nagy L, et al.: PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001, 7:48–52.

    Article  PubMed  CAS  Google Scholar 

  70. Peet DJ, Turley SD, Ma W, et al.: Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998, 93:693–704.

    Article  PubMed  CAS  Google Scholar 

  71. Alberti S, Schuster G, Parini P, et al.: Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. J Clin Invest 2001, 107:565–573.

    Article  PubMed  CAS  Google Scholar 

  72. Gottlicher M, Demoz A, Svensson D, et al.: Structural and metabolic requirements for activators of the peroxisome proliferator-activated receptor. Biochem Pharmacol 1993, 46:2177–2184.

    Article  PubMed  CAS  Google Scholar 

  73. Moya-Camarena SY, Van den Heuvel JP, Belury MA: Conjugated linoleic acid activates peroxisome proliferator-activated receptor alpha and beta subtypes but does not induce hepatic peroxisome proliferation in Sprague-Dawley rats. Biochim Biophys Acta 1999, 1436:331–342.

    PubMed  CAS  Google Scholar 

  74. Kozak KR, Gupta RA, Moody JS, et al.: 15-Lipoxygenase metabolism of 2-arachidonylglycerol. Generation of a peroxisome proliferator-activated receptor alpha agonist. J Biol Chem 2002, 277:23278–23286.

    Article  PubMed  CAS  Google Scholar 

  75. Van Veldhoven PP, Mannaerts GP, Declercq P, Baes M: Do sphingoid bases interact with the peroxisome proliferator activated receptor alpha (PPAR-alpha)?. Cell Signal 2000, 12:475–479.

    Article  PubMed  Google Scholar 

  76. Muga SJ, Thuillier P, Pavone A, et al.: 8S-lipoxygenase products activate peroxisome proliferator-activated receptor alpha and induce differentiation in murine keratinocytes. Cell Growth Differ 2000, 11:447–454.

    PubMed  CAS  Google Scholar 

  77. Murakami K, Ide T, Suzuki M, et al.: Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor alpha. Biochem Biophys Res Commun 1999, 260:609–613.

    Article  PubMed  CAS  Google Scholar 

  78. Houseknecht KL, Vanden Heuvel JP, Moya-Camarena SY, et al.: Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat [published erratum appears in Biochem Biophys Res Commun 1998 Jun 29;247(3):911]. Biochem Biophys Res Commun 1998, 244:678–682.

    Article  PubMed  CAS  Google Scholar 

  79. Nagy L, Tontonoz P, Alvarez JG, et al.: Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998, 93:229–240.

    Article  PubMed  CAS  Google Scholar 

  80. Shappell SB, Gupta RA, Manning S, et al.: 15S-Hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma and inhibits proliferation in PC3 prostate carcinoma cells. Cancer Res 2001, 61:497–503.

    PubMed  CAS  Google Scholar 

  81. Wigren J, Surapureddi S, Olsson AG, et al.: Differential recruitment of the coactivator proteins CREB-binding protein and steroid receptor coactivator-1 to peroxisome proliferator-activated receptor gamma/9-cis-retinoic acid receptor heterodimers by ligands present in oxidized low-density lipoprotein. J Endocrinol 2003, 177:207–214.

    Article  PubMed  CAS  Google Scholar 

  82. Song C, Hiipakka RA, Liao S: Selective activation of liver X receptor alpha by 6alpha-hydroxy bile acids and analogs. Steroids 2000, 65:423–427.

    Article  PubMed  CAS  Google Scholar 

  83. Song C, Liao S: Cholestenoic acid is a naturally occurring ligand for liver X receptor alpha. Endocrinology 2000, 141:4180–4184.

    Article  PubMed  CAS  Google Scholar 

  84. Janowski BA, Grogan MJ, Jones SA, et al.: Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A 1999, 96:266–271.

    Article  PubMed  CAS  Google Scholar 

  85. Kitareewan S, Burka LT, Tomer KB, et al.: Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Mol Biol Cell 1996, 7:1153–1166.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanden Heuvel, J.P. Diet, fatty acids, and regulation of genes important for heart disease. Curr Atheroscler Rep 6, 432–440 (2004). https://doi.org/10.1007/s11883-004-0083-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-004-0083-9

Keywords

Navigation