Skip to main content

Advertisement

Log in

The Assessment of Cardiac Masses by Cardiac CT and CMR Including Pre-op 3D Reconstruction and Planning

  • Cardio-Oncology (SA Francis and RB Morgan, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to (1) review the recent evidence examining the use of CT and CMR in the assessment of a suspected cardiac mass, (2) summarize the typical imaging features of the most common cardiac masses, and (3) examine the latest developments in the use of three-dimensional reconstructions and models in the preoperative assessment of a cardiac mass.

Recent Findings

CMR can distinguish between tumors and non-tumor masses and between benign and malignant mass with a high degree of accuracy.

Summary

CT and CMR are complementary tools in the evaluation of cardiac masses. CMR is the preferred initial imaging modality due to its versatile imaging planes and superior tissue characterization. CT better depicts calcification and has a higher spatial resolution compared with CMR, which is of particular importance in preoperative planning. CT also offers a valuable alternative in those with contraindications to CMR. Three-dimensional reconstructions, particularly of CT datasets, are a valuable adjunct in the preoperative assessment of a cardiac mass and may allow a better appreciation of the margins of the mass and its relationship with surrounding structures. Three-dimensional printing is an emerging technology which may be of additional value in selected patients with a cardiac mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lam KY, Dickens P, Chan ACL. Tumors of the heart: a 20-year experience with a review of 12 485 consecutive autopsies. Arch Pathol Lab Med. 1993.Oct;117(10):1027-31.

  2. Sütsch G, Jenni R, von Segesser L, Schneider J. Heart tumors: incidence, distribution, diagnosis. Exemplified by 20,305 echocardiographies. Schweiz Med Wochenschr. 1991.Apr;121(17):621–9.

  3. Mc Allister HA. Primary tumors and cysts of the heart and pericardium. Curr Probl Cardiol. 1979;4:1–51. https://doi.org/10.1016/0146-2806(79)90008-2.

    Article  Google Scholar 

  4. Elbardissi AW, Dearani JA, Daly RC, Mullany CJ, Orszulak TA, Puga FJ, et al. Survival after resection of primary cardiac tumors: a 48-year experience. Circulation. 2008;118:S7–S15. https://doi.org/10.1161/CIRCULATIONAHA.107.783126.

    Article  PubMed  Google Scholar 

  5. Roberts WC. Primary and secondary neoplasms of the heart. Am J Cardiol. 1997;80:671–82. https://doi.org/10.1016/S0002-9149(97)00587-0.

    Article  CAS  PubMed  Google Scholar 

  6. Taguchi S. Comprehensive review of the epidemiology and treatments for malignant adult cardiac tumors. Gen Thorac Cardiovasc Surg. 2018;66:257–62.https://doi.org/10.1007/s11748-018-0912-3.

    Article  PubMed  Google Scholar 

  7. Junttila MJ, Fishman JE, Lopera GA, Pattany PM, Velazquez DL, Williams AR, et al. Safety of serial MRI in patients with implantable cardioverter defibrillators. Heart. 2011;97:1852–6. https://doi.org/10.1136/heartjnl-2011-300153.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kakouros N, Giles J, Crundwell NB, McWilliams ET. The utility of cardiac CT beyond the assessment of suspected coronary artery disease. Clin Radiol. 2012 Jul;67(7):695-708. https://doi.org/10.1016/j.crad.2011.11.011.

    Article  CAS  Google Scholar 

  9. Achenbach S, Kondo T. Technical advances in cardiac CT. Cardiol Clin. 2012;30:1–8. https://doi.org/10.1016/j.ccl.2011.11.002.

    Article  PubMed  Google Scholar 

  10. Cody DD, Mahesh M. AAPM/RSNA physics tutorial for residents: technologic advances in multidetector CT with a focus on cardiac imaging. Radiographics. 2007;27:1829–37. https://doi.org/10.1148/rg.276075120.

    Article  PubMed  Google Scholar 

  11. Yin WH, Lu B, Li N, Han L, Hou ZH, Wu RZ, et al. Iterative reconstruction to preserve image quality and diagnostic accuracy at reduced radiation dose in coronary CT angiography: an intraindividual comparison. JACC Cardiovasc Imaging. 2013;6:1239–49. https://doi.org/10.1016/j.jcmg.2013.08.008.

    Article  PubMed  Google Scholar 

  12. Fuchs TA, Stehli J, Bull S, Dougoud S, Clerc OF, Herzog BA, et al. Coronary computed tomography angiography with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination. Eur Heart J. 2014;35:1131–6. https://doi.org/10.1093/eurheartj/ehu053.

    Article  PubMed  PubMed Central  Google Scholar 

  13. • Kassi M, Polsani V, Schutt RC, Wong S, Nabi F, Reardon MJ, et al. Differentiating benign from malignant cardiac tumors with cardiac magnetic resonance imaging. J Thorac Cardiovasc Surg. 2019;157:19121922.e2. https://doi.org/10.1016/j.jtcvs.2018.09.057. This study represents one of the largest reported experiences, and the largest prospective cohort study, evaluating the utility of contemporary CMR is differentiating benign and malignant cardiac tumors.

    Article  PubMed  Google Scholar 

  14. Patel RD, Lim RP, Axel L, Srichai MB. Diagnostic utility of cardiac MRI in clinical evaluation of cardiac masses with histopathological correlation. J Cardiovasc Magn Reson. 2013;14. https://doi.org/10.1186/1532-429x-14-s1-p298.

  15. Tumma R, Dong W, Wang J, Litt H, Han Y. Evaluation of cardiac masses by CMR—strengths and pitfalls: a tertiary center experience. Int J Cardiovasc Imaging. 2016;32:913–20. https://doi.org/10.1007/s10554-016-0845-9.

    Article  PubMed  Google Scholar 

  16. Patel R, Lim RP, Saric M, Nayar A, Babb J, Ettel M, et al. Diagnostic performance of cardiac magnetic resonance imaging and echocardiography in evaluation of cardiac and Paracardiac masses. Am J Cardiol. 2016;117:135–40. https://doi.org/10.1016/j.amjcard.2015.10.014.

    Article  PubMed  Google Scholar 

  17. Rathi VK, Czajka AT, Thompson DV, Doyle M, Tewatia T, Yamrozik J, et al. Can cardiovascular MRI be used to more definitively characterize cardiac masses initially identified using echocardiography? Echocardiography. 2018;35:735–42.

    Article  Google Scholar 

  18. Grebenc ML, Rosado de Christenson ML, Burke AP, Green CE, Galvin JR. Primary cardiac and pericardial neoplasms: radiologic-pathologic correlation. RadioGraphics. 2013;20:1073–103. https://doi.org/10.1148/radiographics.20.4.g00jl081073.

    Article  Google Scholar 

  19. Carney JA. Differences between nonfamilial and familial cardiac myxoma. Am J Surg Pathol. 1985;9:53–5. https://doi.org/10.1097/00000478-198501000-00009.

    Article  CAS  PubMed  Google Scholar 

  20. Shetty Roy AN, Radin M, Sarabi D, Shaoulian E. Familial recurrent atrial myxoma: Carney’s complex. Clin Cardiol. 2011. https://doi.org/10.1002/clc.20845 LK - http://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=01609289&id=doi:10.1002%2Fclc.20845&atitle=Familial+recurrent+atrial+myxoma%3A+Carney%27s+complex&stitle=Clin.+Cardiol.&title=Clinical+Cardiology&volume=34&issue=2&spage=83&epage=86&aulast=Roy&aufirst=A.+Nagesh+Shetty&auinit=A.N.S.&aufull=Roy+A.N.S.&coden=CLCAD&isbn=&pages=83-86&date=2011&auinit1=A&auinitm=N.S.

  21. Colin GC, Gerber BL, Amzulescu M, Bogaert J. Cardiac myxoma: a contemporary multimodality imaging review. Int J Cardiovasc Imaging. 2018;34:1789–808. https://doi.org/10.1007/s10554-018-1396-z.

    Article  PubMed  Google Scholar 

  22. Wei K, Guo HW, Fan SY, Sun XG, Hu SS. Clinical features and surgical results of cardiac myxoma in Carney complex. J Card Surg. 2019;34:14–9. https://doi.org/10.1111/jocs.13980.

    Article  PubMed  Google Scholar 

  23. Hananouchi GI, Goff WB. Cardiac lipoma: six-year follow-up with MRI characteristics, and a review of the literature. Magn Reson Imaging. 1990;8:825–8. https://doi.org/10.1016/0730-725X(90)90021-S.

    Article  CAS  PubMed  Google Scholar 

  24. Heyer CM, Kagel T, Lemburg SP, Bauer TT, Nicolas V. Lipomatous hypertrophy of the interatrial septum: a prospective study of incidence, imaging findings, and clinical symptoms. Chest. 2003;124:2068–73. https://doi.org/10.1378/chest.124.6.2068.

    Article  PubMed  Google Scholar 

  25. Fan CM, Fischman AJ, Kwek BM, Abbara S, Aquino SL. Lipomatous hypertrophy of the interatrial septum: increased uptake on FDG PET. Am J Roentgenol. 2005;184:339–42. https://doi.org/10.2214/ajr.184.1.01840339.

    Article  Google Scholar 

  26. Tazelaar HD, Locke TJ, McGregor CGA. Pathology of surgically excised primary cardiac tumors. Mayo Clin Proc. 1992;67:957–65. https://doi.org/10.1016/S0025-6196(12)60926-4.

    Article  CAS  PubMed  Google Scholar 

  27. Georghiou GP, Vidne BA, Sahar G, Sharoni E, Fuks A, Porat E. Primary cardiac valve tumors. Asian Cardiovasc Thorac Ann. 2010;18:226–8. https://doi.org/10.1177/0218492310367522.

    Article  PubMed  Google Scholar 

  28. Howard RA, Aldea GS, Shapira OM, Kasznica JM, Davidoff R. Papillary fibroelastoma: increasing recognition of a surgical disease. Ann Thorac Surg. 1999;68:1881–5. https://doi.org/10.1016/S0003-4975(99)00860-7.

    Article  CAS  PubMed  Google Scholar 

  29. Carino D, Nicolini F, Molardi A, Indira Dadamo C, Gherli T. Unusual Locations for Cardiac Papillary Fibroelastomas. J Heart Valve Dis. 2017 Mar;26(2):226-230.

  30. Motwani M, Kidambi A, Herzog BA, Uddin A, Greenwood JP, Plein S. MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology. 2013;268:26–43.

    Article  Google Scholar 

  31. Ying L, Lin R, Gao Z, Qi J, Zhang Z, Gu W. Primary cardiac tumors in children: a center’s experience. J Cardiothorac Surg. 2016;11:52. https://doi.org/10.1186/s13019-016-0448-5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Delmo Walter EM, Javier MF, Sander F, Hartmann B, Ekkernkamp A, Hetzer R. Primary cardiac tumors in infants and children: surgical strategy and long-term outcome. Ann Thorac Surg. 2016;102:2062–9. https://doi.org/10.1016/j.athoracsur.2016.04.057.

    Article  PubMed  Google Scholar 

  33. Beghetti M, Gow RM, Haney I, Mawson J, Williams WG, Freedom RM. Pediatric primary benign cardiac tumors: a 15-year review. Am Heart J. 1997;134:1107–14. https://doi.org/10.1016/S0002-8703(97)70032-2.

    Article  CAS  PubMed  Google Scholar 

  34. Bosi G, Lintermans JP, Pellegrino PA, Svaluto-Moreolo G, Vliers A. The natural history of cardiac rhabdomyoma with and without tuberous sclerosis. Acta Paediatr Int J Paediatr. 1996;85:928–31. https://doi.org/10.1111/j.1651-2227.1996.tb14188.x.

    Article  CAS  Google Scholar 

  35. Restrepo CS, Largoza A, Lemos DF, Diethelm L, Koshy P, Castillo P, et al. CT and MR imaging findings of benign cardiac tumors. Curr Probl Diagn Radiol. 2005;34:12–21. https://doi.org/10.1067/j.cpradiol.2004.10.002.

    Article  PubMed  Google Scholar 

  36. Kiaffas MG, Powell AJ, Geva T. Magnetic resonance imaging evaluation of cardiac tumor characteristics in infants and children. Am J Cardiol. 2002;89:1229–33. https://doi.org/10.1016/S0002-9149(02)02314-7.

    Article  PubMed  Google Scholar 

  37. Berkenblit R, Spindola-Franco H, Frater RWM, Fish BB, Glickstein JS. MRI in the evaluation and management of a newborn infant with cardiac rhabdomyoma. Ann Thorac Surg. 1997;63:1475–7. https://doi.org/10.1016/S0003-4975(97)00113-6.

    Article  CAS  PubMed  Google Scholar 

  38. Smythe JF, Dyck JD, Smallhorn JF, Freedom RM. Natural history of cardiac rhabdomyoma in infancy and childhood. Am J Cardiol. 1990;66:1247–9. https://doi.org/10.1016/0002-9149(90)91109-J.

    Article  CAS  PubMed  Google Scholar 

  39. Burke A, Tavora F. The 2015 WHO classification of tumors of the heart and pericardium. J Thorac Oncol. 2016;11:441–52. https://doi.org/10.1016/j.jtho.2015.11.009.

    Article  PubMed  Google Scholar 

  40. Nwachukwu H, Li A, Nair V, Nguyen E, David TE, Butany J. Cardiac fibroma in adults. Cardiovasc Pathol. 2011;20:e146–52. https://doi.org/10.1016/j.carpath.2010.08.006.

    Article  PubMed  Google Scholar 

  41. de León GA, Zaeri N, Donner RM, Karmazin N. Cerebral rhinocele, hydrocephalus, and cleft lip and palate in infants with cardiac fibroma. J Neurol Sci. 1990;99:27–36. https://doi.org/10.1016/0022-510X(90)90196-T.

    Article  PubMed  Google Scholar 

  42. Hoffmann U, Globits S, Schima W, Loewe C, Puig S, Oberhuber G, et al. Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol. 2003;92:890–5. https://doi.org/10.1016/S0002-9149(03)00911-1.

    Article  PubMed  Google Scholar 

  43. Luna A, Ribes R, Caro P, Vida J, Erasmus JJ. Evaluation of cardiac tumors with magnetic resonance imaging. Eur Radiol. 2005;15:1446–55. https://doi.org/10.1007/s00330-004-2603-y.

    Article  PubMed  Google Scholar 

  44. Li W, Teng P, Xu H, Ma L, Ni Y. Cardiac hemangioma: a comprehensive analysis of 200 cases. Ann Thorac Surg. 2015;99:2246–52. https://doi.org/10.1016/j.athoracsur.2015.02.064.

    Article  PubMed  Google Scholar 

  45. Oshima H, Hara M, Kono T, Shibamoto Y, Mishima A, Akita S. Cardiac hemangioma of the left atrial appendage: CT and MR findings. J Thorac Imaging. 2003;18:204–6. https://doi.org/10.1097/00005382-200307000-00012.

    Article  PubMed  Google Scholar 

  46. Truong PT, Jones SO, Martens B, Alexander C, Paquette M, Joe H, et al. Treatment and outcomes in adult patients with primary cardiac sarcoma: the British Columbia Cancer Agency experience. Ann Surg Oncol. 2009;16:3358–65. https://doi.org/10.1245/s10434-009-0734-8.

    Article  PubMed  Google Scholar 

  47. Donsbeck AV, Ranchere D, Coindre JM, Le Gall F, Cordier JF, Loire R. Primary cardiac sarcomas: an immunohistochemical and grading study with long-term follow-up of 24 cases. Histopathology. 1999;34:295–304. https://doi.org/10.1046/j.1365-2559.1999.00636.x.

    Article  CAS  PubMed  Google Scholar 

  48. Bakaeen FG, Reardon MJ, Coselli JS, Miller CC, Howell JF, Lawrie GM, et al. Surgical outcome in 85 patients with primary cardiac tumors. Am J Surg. 2003;186:641–7. https://doi.org/10.1016/j.amjsurg.2003.08.004.

    Article  PubMed  Google Scholar 

  49. Hamidi M, Moody JS, Weigel TL, Kozak KR. Primary cardiac sarcoma. Ann Thorac Surg. 2010;90:176–81. https://doi.org/10.1016/j.athoracsur.2010.03.065.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Simpson L, Kumar SK, Okuno SH, Schaff HV, Porrata LF, Buckner JC, et al. Malignant primary cardiac tumors: review of a single institution experience. Cancer. 2008;112:2440–6. https://doi.org/10.1002/cncr.23459.

    Article  PubMed  Google Scholar 

  51. Perchinsky MJ, Lichtenstein SV, Tyers GFO. Primary cardiac tumors: forty years’ experience with 71 patients. Cancer. 1997;79:1809–15. https://doi.org/10.1002/(SICI)1097-0142(19970501)79:9<1809::AID-CNCR25>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  52. Buckley O, Madan R, Kwong R, Rybicki FJ, Hunsaker A. Cardiac masses, part 2: key imaging features for diagnosis and surgical planning. Am J Roentgenol. 2011;197:W842–51. https://doi.org/10.2214/AJR.11.6903.

    Article  Google Scholar 

  53. Burnside N, MacGowan SW. Malignant primary cardiac tumours. Interact Cardiovasc Thorac Surg. 2012;15:1004–6. https://doi.org/10.1093/icvts/ivs350.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shapiro LM. General cardiology: cardiac tumours: diagnosis and management. Heart. 2002;85:218–22. https://doi.org/10.1136/heart.85.2.218.

    Article  Google Scholar 

  55. Villacampa VM, Villarreal M, Ros LH, Álvarez R, Cózar M, Fuertes MI. Cardiac rhabdomyosarcoma: diagnosis by MR imaging. Eur Radiol. 1999;9:634–7. https://doi.org/10.1007/s003300050723.

    Article  CAS  PubMed  Google Scholar 

  56. Burke A, Jeudy J, Virmani R. Cardiac tumours: an update. Heart. 2008;94:117–23. https://doi.org/10.1136/hrt.2005.078576.

    Article  PubMed  Google Scholar 

  57. Holladay AO, Siegel RJ, Schwarfz DA. Cardiac malignant lymphoma in acquired immune deficiency syndrome. Cancer. 1992;70:2203–7. https://doi.org/10.1002/1097-0142(19921015)70:8<2203::AID-CNCR2820700831>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  58. Ceresoli GL, Ferreri AJM, Bucci E, Ripa C, Ponzoni M, Villa E. Primary cardiac lymphoma in immunocompetent patients: diagnostic and therapeutic management. Cancer. 1997;80:1497–506. https://doi.org/10.1002/(SICI)1097-0142(19971015)80:8<1497::AID-CNCR18>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  59. Perrone MA, Intorcia A, Morgagni R, Marchei M, Sergi D, Pugliese L, et al. Primary cardiac lymphoma: the role of multimodality imaging. J Cardiovasc Med. 2018:1. https://doi.org/10.2459/JCM.0000000000000668.

  60. Coulier B, Colin GC, Tourmous H, Floris N, Van Eeckhout P, Scavée C. Imaging features of primary cardiac lymphoma. Diagn Interv Imaging. 2018;99:115–7. https://doi.org/10.1016/j.diii.2017.05.013.

    Article  CAS  PubMed  Google Scholar 

  61. Petrich A, Cho SI, Billett H. Primary cardiac lymphoma: an analysis of presentation, treatment, and outcome patterns. Cancer. 2011;117:581–9. https://doi.org/10.1002/cncr.25444.

    Article  PubMed  Google Scholar 

  62. Jeudy J, Kirsch J, Tavora F, Burke AP, Franks TJ, Mohammed TL, et al. From the radiologic pathology archives: cardiac lymphoma: radiologic-pathologic correlation. RadioGraphics. 2012;32:1369–80. https://doi.org/10.1148/rg.325115126.

    Article  PubMed  Google Scholar 

  63. Carter BW, Wu CC, Khorashadi L, Godoy MCB, De Groot PM, Abbott GF, et al. Multimodality imaging of cardiothoracic lymphoma. Eur J Radiol. 2014;83:1470–82. https://doi.org/10.1016/j.ejrad.2014.05.018.

    Article  PubMed  Google Scholar 

  64. Dorsay TA, Ho VB, Rovira MJ, Armstrong MA, Brissette MD. Primary cardiac lymphoma: CT and MR findings. J Comput Assist Tomogr. 1993;17:978–81. https://doi.org/10.1097/00004728-199311000-00025.

    Article  CAS  PubMed  Google Scholar 

  65. Butany J, Nair V, Naseemuddin A, Nair GM, Catton C, Yau T. Cardiac tumours: diagnosis and management. Lancet Oncol. 2005;6:219–28. https://doi.org/10.1016/S1470-2045(05)70093-0.

    Article  PubMed  Google Scholar 

  66. Abraham KP, Reddy V, Gattuso P. Neoplasms metastatic to the heart: review of 3314 consecutive autopsies. bAm J Cardiovasc Pathol 1990;3(3):195-8.

  67. Mousseaux E, Meunier P, Azancott S, Dubayle P, Gaux JC. Cardiac metastatic melanoma investigated by magnetic resonance imaging. Magn Reson Imaging. 1998;16:91–5. https://doi.org/10.1016/S0730-725X(97)00200-2.

    Article  CAS  PubMed  Google Scholar 

  68. Lichtenberger JP, Reynolds DA, Keung J, Keung E, Carter BW. Metastasis to the heart: a radiologic approach to diagnosis with pathologic correlation. Am J Roentgenol. 2016;207:764–72. https://doi.org/10.2214/AJR.16.16148.

    Article  Google Scholar 

  69. Kim EY, Choe YH, Sung K, Park SW, Kim JH, Ko YH. Multidetector CT and MR imaging of cardiac tumors. Korean J Radiol. 2009;10:164. https://doi.org/10.3348/kjr.2009.10.2.164.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Crean AM, Juli C. Diagnosis of metastatic melanoma to the heart with an intrinsic contrast approach using melanin inversion recovery imaging. J Comput Assist Tomogr. 2007;31:924–30. https://doi.org/10.1097/RCT.0b013e31804b213b.

    Article  PubMed  Google Scholar 

  71. Kim DH, Il Choi S, Choi JA, Chang HJ, Choi DJ, Lim C, et al. Various findings of cardiac thrombi on MDCT and MRI. J Comput Assist Tomogr. 2006;30:572–7. https://doi.org/10.1097/00004728-200607000-00004.

    Article  CAS  PubMed  Google Scholar 

  72. Hur J, Kim YJ, Lee HJ, Nam JE, Ha JW, Heo JH, et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: a prospective comparison study with transesophageal echocardiography. Stroke. 2011;42:2471–7. https://doi.org/10.1161/STROKEAHA.110.611293.

    Article  PubMed  Google Scholar 

  73. Hur J, Pak HN, Kim YJ, Lee HJ, Chang HJ, Hong YJ, et al. Dual-enhancement cardiac computed tomography for assessing left atrial thrombus and pulmonary veins before radiofrequency catheter ablation for atrial fibrillation. Am J Cardiol. 2013;112:238–44. https://doi.org/10.1016/j.amjcard.2013.03.018.

    Article  PubMed  Google Scholar 

  74. Zou H, Zhang Y, Tong J, Liu Z. Multidetector computed tomography for detecting left atrial/left atrial appendage thrombus: a meta-analysis. Intern Med J. 2015;45:1044–53. https://doi.org/10.1111/imj.12862.

    Article  CAS  PubMed  Google Scholar 

  75. • Chen J, Zhang H, Zhu D, Wang Y, Byanju S, Liao M. Cardiac MRI for detecting left atrial/left atrial appendage thrombus in patients with atrial fibrillation : meta-analysis and systematic review. Herz. 2018. https://doi.org/10.1007/s00059-017-4676-9. This study represents a comprehensive systematic review and meta-analysis evaluating contemporary CMR in detecting left atrial appendage thrombus and compares the accuracy of various imaging sequences.

    Article  Google Scholar 

  76. Scheffel H, Baumueller S, Stolzmann P, Leschka S, Plass A, Alkadhi H, et al. Atrial myxomas and thrombi: comparison of imaging features on CT. Am J Roentgenol. 2009;192:639–45. https://doi.org/10.2214/AJR.08.1694.

    Article  Google Scholar 

  77. Maini R, Gadiraju TV, Jabbar A, Danrad R, Sweeney A. Cardiac MRI as a useful tool to differentiate tumor and thrombus. Int. J. Cardiovasc. Imaging. 2017;33:1795–6. https://doi.org/10.1007/s10554-017-1172-5.

    Article  PubMed  Google Scholar 

  78. Bittencourt MS, Achenbach S, Marwan M, Seltmann M, Muschiol G, Ropers D, et al. Left ventricular thrombus attenuation characterization in cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2012;6:121–6. https://doi.org/10.1016/j.jcct.2011.12.006.

    Article  PubMed  Google Scholar 

  79. Paydarfar D, Krieger D, Dib N, Blair RH, Pastore JO, Stetz JJ, et al. In vivo magnetic resonance imaging and surgical histopathology of intracardiac masses: distinct features of subacute thrombi. Cardiology. 2001;95:40–7. https://doi.org/10.1159/000047342.

    Article  CAS  PubMed  Google Scholar 

  80. Kligerman S. Imaging of pericardial disease. Radiol Clin N Am. 2019;57:179–99. https://doi.org/10.1016/j.rcl.2018.09.001.

    Article  PubMed  Google Scholar 

  81. Fortuny E, Fernandez-Golfin C, Viliani D, Zamorano JL. Multimodality imaging in pericardial diseases. J Cardiovasc Echogr. 2012;22:1–10. https://doi.org/10.1016/j.jcecho.2011.09.004.

    Article  Google Scholar 

  82. Fishman EK, Bluemke DA, Soyer P. Three-dimensional imaging: past, present and future. Diagn Interv Imaging. 2016;97:283–5. https://doi.org/10.1016/j.diii.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  83. Rowe SP, Johnson PT, Fishman EK. Initial experience with cinematic rendering for chest cardiovascular imaging. Br J Radiol. 2018. https://doi.org/10.1259/bjr.20170558.

  84. Rowe SP, Johnson PT, Fishman EK. Cinematic rendering of cardiac CT volumetric data: principles and initial observations. J Cardiovasc Comput Tomogr. 2018;12:56–9. https://doi.org/10.1016/j.jcct.2017.11.013.

    Article  PubMed  Google Scholar 

  85. Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H. Cinematic rendering – an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging. 2016;7:849–56. https://doi.org/10.1007/s13244-016-0518-1.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Vukicevic M, Mosadegh B, Min JK, Little SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging. 2017;10:171–84. https://doi.org/10.1016/j.jcmg.2016.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Otton JM, Birbara NS, Hussain T, Greil G, Foley TA, Pather N. 3D printing from cardiovascular CT: a practical guide and review. Cardiovasc Diagn Ther. 2017;7:507–26. https://doi.org/10.21037/cdt.2017.01.12.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yan C, Wang C, Pan X, Li S, Song H, Liu Q, Xu N, Wang J. Three dimensional printing assisted transcatheter closure of atrial septal defect with deficient posterior-inferior rim. Catheter Cardiovasc Interv. 2018 Dec 1;92(7):1309-1314.https://doi.org/10.1002/ccd.27799

    Article  Google Scholar 

  89. Faganello G, Campana C, Belgrano M, Russo G, Pozzi M, Cioffi G, et al. Three dimensional printing of an atrial septal defect: is it multimodality imaging? Int. J. Cardiovasc. Imaging. 2016;32:427–8. https://doi.org/10.1007/s10554-015-0801-0.

    Article  PubMed  Google Scholar 

  90. Wang Z, Liu Y, Xu Y, Gao C, Chen Y, Luo H. Three-dimensional printing-guided percutaneous transcatheter closure of secundum atrial septal defect with rim deficiency: first-in-human series. Cardiol J. 2016;23:599–603. https://doi.org/10.5603/CJ.a2016.0094.

    Article  CAS  PubMed  Google Scholar 

  91. Chepelev L, Wake N, Ryan J, Althobaity W, Gupta A, Arribas E, et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print Med. 2018;4:11. https://doi.org/10.1186/s41205-018-0030-y.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schmauss D, Gerber N, Sodian R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg. 2013;145:1407–8. https://doi.org/10.1016/j.jtcvs.2012.12.030.

    Article  PubMed  Google Scholar 

  93. Jacobs S, Grunert R, Mohr FW, Falk V. 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg. 2008;7:6–9. https://doi.org/10.1510/icvts.2007.156588.

    Article  PubMed  Google Scholar 

  94. Al Jabbari O, Abu Saleh WK, Patel AP, Igo SR, Reardon MJ. Use of three-dimensional models to assist in the resection of malignant cardiac tumors. J Card Surg. 2016;31:581–3. https://doi.org/10.1111/jocs.12812.

    Article  PubMed  Google Scholar 

  95. Valverde I, Gomez G, Suarez-Mejias C, Hosseinpour A-R, Hazekamp M, Roest A, et al. 3D printed cardiovascular models for surgical planning in complex congenital heart diseases. J Cardiovasc Magn Reson. 2015;17. https://doi.org/10.1186/1532-429x-17-s1-p196.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Liddy.

Ethics declarations

Conflict of Interest

Stephen Liddy, Colin McQuade, Kevin P. Walsh, Bryan Loo, and Orla Buckley declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardio-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liddy, S., McQuade, C., Walsh, K.P. et al. The Assessment of Cardiac Masses by Cardiac CT and CMR Including Pre-op 3D Reconstruction and Planning. Curr Cardiol Rep 21, 103 (2019). https://doi.org/10.1007/s11886-019-1196-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-019-1196-7

Keywords

Navigation