Skip to main content

Advertisement

Log in

Advances in the Diagnosis and Management of Pediatric Osteomyelitis

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Acute hematogenous osteomyelitis is a common disease that affects previously healthy children of all age groups. Despite its importance, there are limited data in the current literature to guide many aspects of the diagnosis and therapy of this infection. Over the last decade, our understanding of the etiology of this infection has changed, with increased recognition of Kingella kingae and the dramatic increase in community-associated Methicillin-resistant Staphylococcus aureus (CA-MRSA) infections. There is a need for the optimization of diagnostic strategies, such as MRI and serum inflammatory markers. Several recent studies have examined treatment strategies, including a rapid transition to oral antimicrobial therapy and a shortened overall course of therapy. Many new therapeutic options are on the horizon that will likely impact the management of this and other childhood bacterial infections. This review summarizes recent investigations into the optimal diagnosis and management of acute hematogenous osteomyelitis in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Krogstad P. Osteomyelitis. In: Feigin RD, Cherry JD, Kaplan SL, Demmler-Harrison GJ, editors. Feigin and Cherry’s textbook of pediatric infectious diseases. Philadelphia: Saunders Elsevier; 2009.

    Google Scholar 

  2. Fleisher GR, Ludwig S. Textbook of pediatric emergency medicine. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2010. xxx, 1970 p.

    Google Scholar 

  3. Vazquez M. Osteomyelitis in children. Curr Opin Pediatr. 2002;14(1):112–5.

    Article  PubMed  Google Scholar 

  4. Long SS, Pickering LK, Prober CG. Principles and practice of pediatric infectious diseases. 3rd rev. ed. Philadelphia: Churchill Livingstone/Elsevier; 2008. xxxiii, 1618 p.

    Google Scholar 

  5. Chambers JB, Forsythe DA, Bertrand SL, et al. Retrospective review of osteoarticular infections in a pediatric sickle cell age group. J Pediatr Orthop. 2000;20(5):682–5.

    Article  PubMed  CAS  Google Scholar 

  6. Kaplan SL. Challenges in the evaluation and management of bone and joint infections and the role of new antibiotics for gram positive infections. Adv Exp Med Biol. 2009;634:111–20.

    PubMed  Google Scholar 

  7. Pannaraj PS, Hulten KG, Gonzalez BE, et al. Infective pyomyositis and myositis in children in the era of community-acquired, methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2006;43(8):953–60.

    Article  PubMed  Google Scholar 

  8. Arnold SR, Elias D, Buckingham SC, et al. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: emergence of community-associated methicillin-resistant Staphylococcus aureus. J Pediatr Orthop. 2006;26(6):703–8.

    Article  PubMed  Google Scholar 

  9. • Hawkshead JJ, Patel NB, Steele RW, Heinrich SD. Comparative severity of pediatric osteomyelitis attributable to methicillin-resistant versus methicillin-sensitive Staphylococcus aureus. J Pediatr Orthop. 2009;29(1):85–90. This retrospective study of 97 children with staphylococcal osteomyelitis suggests that MRSA osteomyelitis is more severe and requires more aggressive surgical and medical management.

    Article  PubMed  Google Scholar 

  10. • Williams DJ, Deis JN, Tardy J, Creech CB. Culture-negative osteoarticular infections in the era of community-associated methicillin-resistant staphylococcus aureus. Pediatr Infect Dis J. 2011;30(6):523–25. This study showed that while culture-negative osteoarticular infections are milder compared with culture-positive infections, the duration of parenteral antibiotics for these infections has increased dramatically in recent years.

  11. Bocchini CE, Hulten KG, Mason EO, et al. Panton-Valentine leukocidin genes are associated with enhanced inflammatory response and local disease in acute hematogenous Staphylococcus aureus osteomyelitis in children. Pediatrics. 2006;117(2):433–40.

    Article  PubMed  Google Scholar 

  12. Moumile K, Cadilhac C, Lina G, et al. Severe osteoarticular infection associated with Panton-Valentine leukocidin-producing Staphylococcus aureus. Diagn Microbiol Infect Dis. 2006;56(1):95–7.

    Article  PubMed  Google Scholar 

  13. Voyich JM, Otto M, Mathema B, et al. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J Infect Dis. 2006;194(12):1761–70.

    Article  PubMed  CAS  Google Scholar 

  14. Cunnington A, Brick T, Cooper M, et al. Severe invasive Panton-Valentine Leucocidin positive Staphylococcus aureus infections in children in London, UK. J Infect. 2009;59(1):28–36.

    Article  PubMed  CAS  Google Scholar 

  15. Vander Have KL, Karmazyn B, Verma M, et al. Community-associated methicillin-resistant Staphylococcus aureus in acute musculoskeletal infection in children: a game changer. J Pediatr Orthop. 2009;29(8):927–31.

    Article  PubMed  Google Scholar 

  16. Von Graevenitz AZR, Mutters R. Actinobacillus, Capnocytophaga, Eikenella, Kingella, Pasteurella, and other fastidious or rarely encountered gram-negative rods. In: Baron EJ, Murray PR, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. Washington: American Society for Microbiology; 2003. p. 614–5.

    Google Scholar 

  17. Yagupsky P, Porat N, Pinco E. Pharyngeal colonization by Kingella kingae in children with invasive disease. Pediatr Infect Dis J. 2009;28(2):155–7.

    Article  PubMed  Google Scholar 

  18. Yagupsky P. Kingella kingae: from medical rarity to an emerging paediatric pathogen. Lancet Infect Dis. 2004;4(6):358–67.

    Article  PubMed  Google Scholar 

  19. • Dubnov-Raz G, Ephros M, Garty B-Z, et al. Invasive pediatric Kingella kingae infections: a nationwide collaborative study. Pediatr Infect Dis J. 2010;29(7):639–43. This large study helped to define Kingella as an important pathogen in children age 6 to 36 months.

    Article  PubMed  Google Scholar 

  20. • Yagupsky P, Porsch E, St. Geme 3rd JW. Kingella kingae: an emerging pathogen in young children. Pediatrics. 2011;127(3):557. These authors provide an excellent revew of Kingella kingae, including its importance as an etiology of osteomyelitis in young children.

    Article  PubMed  Google Scholar 

  21. Yagupsky P, Dagan R, Prajgrod F, Merires M. Respiratory carriage of Kingella kingae among healthy children. Pediatr Infect Dis J. 1995;14(8):673–8.

    Article  PubMed  CAS  Google Scholar 

  22. Yagupsky P, Merires M, Bahar J, Dagan R. Evaluation of novel vancomycin-containing medium for primary isolation of Kingella kingae from upper respiratory tract specimens. J Clin Microbiol. 1995;33(5):1426–7.

    PubMed  CAS  Google Scholar 

  23. Yagupsky P, Weiss-Salz I, Fluss R, et al. Dissemination of Kingella kingae in the community and long-term persistence of invasive clones. Pediatr Infect Dis J. 2009;28(8):707–10.

    Article  PubMed  Google Scholar 

  24. Chometon S, Benito Y, Chaker M, et al. Specific real-time polymerase chain reaction places Kingella kingae as the most common cause of osteoarticular infections in young children. Pediatr Infect Dis J. 2007;26(5):377–81.

    Article  PubMed  Google Scholar 

  25. •• Pääkkönen M, Kallio MJT, Kallio PE, Peltola H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin Orthop Relat Res. 2010;468(3):861–6. This study examined the use of both ESR and CRP for initial diagnosis and monitoring of pediatric osteoarticular infection, finding that the combination of both tests maximizes the sensitivity, and demonstrating that CRP normalizes much more quickly.

    Article  PubMed  Google Scholar 

  26. Unkila-Kallio L, Kallio MJ, Eskola J, Peltola H. Serum C-reactive protein, erythrocyte sedimentation rate, and white blood cell count in acute hematogenous osteomyelitis of children. Pediatrics. 1994;93(1):59–62.

    PubMed  CAS  Google Scholar 

  27. Khachatourians AG, Patzakis MJ, Roidis N, Holtom PD. Laboratory monitoring in pediatric acute osteomyelitis and septic arthritis. Clin Orthop Relat Res. 2003;409:186–94.

    Article  PubMed  Google Scholar 

  28. Roine I, Faingezicht I, Arguedas A, et al. Serial serum C-reactive protein to monitor recovery from acute hematogenous osteomyelitis in children. Pediatr Infect Dis J. 1995;14(1):40–4.

    Article  PubMed  CAS  Google Scholar 

  29. • Ranson M. Imaging of pediatric musculoskeletal infection. Semin Musculoskelet Radiol. 2009;13(3):277–99. This is an excellent review of imaging modalities for pediatric bone and joint infections.

    Article  PubMed  Google Scholar 

  30. Browne LP, Mason EO, Kaplan SL, et al. Optimal imaging strategy for community-acquired Staphylococcus aureus musculoskeletal infections in children. Pediatr Radiol. 2008;38(8):841–7.

    Article  PubMed  Google Scholar 

  31. Lalam RK, Cassar-Pullicino VN, Tins BJ. Magnetic resonance imaging of appendicular musculoskeletal infection. Top Magn Reson Imag. 2007;18(3):177–91.

    Article  Google Scholar 

  32. Jaramillo D, Treves ST, Kasser JR, et al. Osteomyelitis and septic arthritis in children: appropriate use of imaging to guide treatment. AJR Am J Roentgenol. 1995;165(2):399–403.

    PubMed  CAS  Google Scholar 

  33. Mazur JM, Ross G, Cummings J, et al. Usefulness of magnetic resonance imaging for the diagnosis of acute musculoskeletal infections in children. J Pediatr Orthop. 1995;15(2):144–7.

    PubMed  CAS  Google Scholar 

  34. Connolly SA, Connolly LP, Drubach LA, et al. MRI for detection of abscess in acute osteomyelitis of the pelvis in children. AJR Am J Roentgenol. 2007;189(4):867–72.

    Article  PubMed  Google Scholar 

  35. • Courtney PM, Flynn JM, Jaramillo D, et al. Clinical indications for repeat MRI in children with acute hematogenous osteomyelitis. J Pediatr Orthop. 2010;30(8):883–7. This study found that a repeat MRI did not have a useful role in the routine management of pediatric AHO, though it may be helpful in patients who are not improving on standard therapy.

    Article  PubMed  Google Scholar 

  36. Moumile K, Merckx J, Glorion C, et al. Osteoarticular infections caused by Kingella kingae in children: contribution of polymerase chain reaction to the microbiologic diagnosis. Pediatr Infect Dis J. 2003;22(9):837–9.

    PubMed  Google Scholar 

  37. Verdier I, Gayet-Ageron A, Ploton C, et al. Contribution of a broad range polymerase chain reaction to the diagnosis of osteoarticular infections caused by Kingella kingae: description of twenty-four recent pediatric diagnoses. Pediatr Infect Dis J. 2005;24(8):692–6.

    Article  PubMed  Google Scholar 

  38. Ilharreborde B, Bidet P, Lorrot M, et al. New real-time PCR-based method for Kingella kingae DNA detection: application to samples collected from 89 children with acute arthritis. J Clin Microbiol. 2009;47(6):1837–41.

    Article  PubMed  CAS  Google Scholar 

  39. Rosey AL, Abachin E, Quesnes G, et al. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J Microbiol Meth. 2007;68(1):88–93.

    Article  CAS  Google Scholar 

  40. Fenollar F, Lévy P-Y, Raoult D. Usefulness of broad-range PCR for the diagnosis of osteoarticular infections. Curr Opin Rheumatol. 2008;20(4):463–70.

    Article  PubMed  CAS  Google Scholar 

  41. Fenollar F, Roux V, Stein A, et al. Analysis of 525 samples to determine the usefulness of PCR amplification and sequencing of the 16S rRNA gene for diagnosis of bone and joint infections. J Clin Microbiol. 2006;44(3):1018–28.

    Article  PubMed  CAS  Google Scholar 

  42. Fihman V, Hannouche D, Bousson V, et al. Improved diagnosis specificity in bone and joint infections using molecular techniques. J Infect. 2007;55(6):510–17.

    Google Scholar 

  43. Stengel D, Bauwens K, Sehouli J, et al. Systematic review and meta-analysis of antibiotic therapy for bone and joint infections. Lancet Infect Dis. 2001;1(3):175–88.

    Article  PubMed  CAS  Google Scholar 

  44. Kaplan SL. Implications of methicillin-resistant Staphylococcus aureus as a community-acquired pathogen in pediatric patients. Infect Dis Clin North Am. 2005;19(3):747–57.

    Article  PubMed  Google Scholar 

  45. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010;23(3):616–87.

    Article  PubMed  CAS  Google Scholar 

  46. • Herigon JC, Hersh AL, Gerber JS, et al. Antibiotic management of Staphylococcus aureus infections in US children’s hospitals, 1999–2008. Pediatrics. 2010;125(6):e1294–300. This paper examined antibiotic prescribing patterns over the last decade, finding that clindamycin is now the most common antibiotic prescribed for S. aureus infections in children, including osteomyelitis.

    Article  PubMed  Google Scholar 

  47. Sakoulas G, Moise-Broder PA, Schentag J, et al. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42(6):2398–402.

    Article  PubMed  CAS  Google Scholar 

  48. Braun L, Craft D, Williams R, et al. Increasing clindamycin resistance among methicillin-resistant Staphylococcus aureus in 57 northeast United States military treatment facilities. Pediatr Infect Dis J. 2005;24(7):622–6.

    Article  PubMed  Google Scholar 

  49. Chavez-Bueno S, Bozdogan B, Katz K, et al. Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-acquired methicillin-resistant Staphylococcus aureus in Dallas, Texas. Antimicrob Agents Chemother. 2005;49(6):2283–8.

    Article  PubMed  CAS  Google Scholar 

  50. Han LL, McDougal LK, Gorwitz RJ, et al. High frequencies of clindamycin and tetracycline resistance in methicillin-resistant Staphylococcus aureus pulsed-field type USA300 isolates collected at a Boston ambulatory health center. J Clin Microbiol. 2007;45(4):1350–2.

    Article  PubMed  CAS  Google Scholar 

  51. McMullen KM, Warren DK, Woeltje KF. The changing susceptibilities of methicillin-resistant Staphylococcus aureus at a midwestern hospital: the emergence of “community-associated” MRSA. Am J Infect Control. 2009;37(6):454–7.

    Article  PubMed  Google Scholar 

  52. Martinez-Aguilar G, Hammerman WA, Mason Jr EO, Kaplan SL. Clindamycin treatment of invasive infections caused by community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus in children. Pediatr Infect Dis J. 2003;22(7):593–8.

    PubMed  Google Scholar 

  53. Grim SA, Rapp RP, Martin CA, Evans ME. Trimethoprim-sulfamethoxazole as a viable treatment option for infections caused by methicillin-resistant Staphylococcus aureus. Pharmacotherapy. 2005;25(2):253–64.

    Article  PubMed  CAS  Google Scholar 

  54. Euba G, Murillo O, Fernandez-Sabe N, et al. Long-term follow-up trial of oral rifampin-cotrimoxazole combination versus intravenous cloxacillin in treatment of chronic staphylococcal osteomyelitis. Antimicrob Agents Chemother. 2009;53(6):2672–6.

    Article  PubMed  CAS  Google Scholar 

  55. •• Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55. These recently-released guidelines from the Infectious Diseases Society of America include detailed recommendations on the treatment of MRSA osteomyelitis in children.

    Article  PubMed  Google Scholar 

  56. Rose WE, Poppens PT. Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus. J Antimicrob Chemother. 2009;63(3):485–8.

    Article  PubMed  CAS  Google Scholar 

  57. Levine DP, Fromm BS, Reddy BR. Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. Ann Intern Med. 1991;115(9):674–80.

    PubMed  CAS  Google Scholar 

  58. Deresinski S. Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2009;49(7):1072–9.

    Article  PubMed  CAS  Google Scholar 

  59. • Dotis J, Iosifidis E, Ioannidou M, Roilides E. Use of linezolid in pediatrics: a critical review. Int J Infect Dis. 2010;14(8):e638–48. This is a thorough review of the safety and efficacy of linezolid for a variety of infections in children, including osteomyelitis.

    Article  PubMed  CAS  Google Scholar 

  60. Chen C-J, Chiu C-H, Lin T-Y, et al. Experience with linezolid therapy in children with osteoarticular infections. Pediatr Infect Dis J. 2007;26(11):985–8.

    Article  PubMed  Google Scholar 

  61. Rice DAK, Mendez-Vigo L. Daptomycin in bone and joint infections: a review of the literature. Arch Orthop Trauma Surg. 2009;129(11):1495–504.

    Article  PubMed  Google Scholar 

  62. Lefebvre M, Jacqueline C, Amador G, et al. Efficacy of daptomycin combined with rifampicin for the treatment of experimental meticillin-resistant Staphylococcus aureus (MRSA) acute osteomyelitis. Int J Antimicrob Agents. 2010;36(6):542–4.

    Article  PubMed  CAS  Google Scholar 

  63. Villegas-Estrada A, Lee M, Hesek D, et al. Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP 2a by two anti-MRSA beta-lactam antibiotics. J Am Chem Soc. 2008;130(29):9212–3.

    Article  PubMed  CAS  Google Scholar 

  64. Eliopoulos GM. Microbiology of drugs for treating multiply drug-resistant Gram-positive bacteria. J Infect. 2009;59 Suppl 1:S17–24.

    Article  PubMed  Google Scholar 

  65. Laudano JB. Ceftaroline fosamil: a new broad-spectrum cephalosporin. J Antimicrob Chemother. 2011;66 Suppl 3:iii11–8.

    Article  PubMed  CAS  Google Scholar 

  66. ClinicalTrials.gov NIoH. Study of blood levels of ceftaroline fosamil in children who are receiving antibiotic therapy in the hospital. [cited Accessed May 2011. Available from: http://clinicaltrials.gov/ct2/show/NCT01298843].

  67. • Jacqueline C, Amador G, Caillon J, et al. Efficacy of the new cephalosporin ceftaroline in the treatment of experimental methicillin-resistant Staphylococcus aureus acute osteomyelitis. J Antimicrob Chemother. 2010;65(8):1749–52. This paper describes the use of ceftaroline, a new 5th-generation cephalosporin with MRSA activity, in an animal model of osteomyelitis.

    Article  PubMed  CAS  Google Scholar 

  68. McDevitt D, Francois P, Vaudaux P, Foster TJ. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol. 1994;11(2):237–48.

    Article  PubMed  CAS  Google Scholar 

  69. Josefsson E, Hartford O, O’Brien L, et al. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis. 2001;184(12):1572–80.

    Article  PubMed  CAS  Google Scholar 

  70. Weems Jr JJ, Steinberg JP, Filler S, et al. Phase II, randomized, double-blind, multicenter study comparing the safety and pharmacokinetics of tefibazumab to placebo for treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2006;50(8):2751–5.

    Article  PubMed  CAS  Google Scholar 

  71. Domanski PJ, Patel PR, Bayer AS, et al. Characterization of a humanized monoclonal antibody recognizing clumping factor A expressed by Staphylococcus aureus. Infect Immun. 2005;73(8):5229–32.

    Article  PubMed  CAS  Google Scholar 

  72. •• Zaoutis T, Localio AR, Leckerman K, et al. Prolonged intravenous therapy versus early transition to oral antimicrobial therapy for acute osteomyelitis in children. Pediatrics. 2009;123(2):636–42. This large retrospective cohort study clearly showed that an early transition to oral antimicrobial therapy avoided the risk of prolonged parenteral therapy without increasing the risk of treatment failure.

    Article  PubMed  Google Scholar 

  73. Peltola H, Unkila-Kallio L, Kallio MJ. Simplified treatment of acute staphylococcal osteomyelitis of childhood. The Finnish Study Group. Pediatrics. 1997;99(6):846–50.

    Article  PubMed  CAS  Google Scholar 

  74. Le Saux N, Howard A, Barrowman NJ, et al. Shorter courses of parenteral antibiotic therapy do not appear to influence response rates for children with acute hematogenous osteomyelitis: a systematic review. BMC Infect Dis. 2002;2:16.

    Article  PubMed  Google Scholar 

  75. Barrier A, Connelly M, Williams D, et al. Complications of peripherally-inserted central catheters for antibiotic administration. In: Pediatric hospital medicine conference. 2010. Minneapolis, MN.

  76. Weichert S, Sharland M, Clarke NM, Faust SN. Acute haematogenous osteomyelitis in children: is there any evidence for how long we should treat? Curr Opin Infect Dis. 2008;21(3):258–62.

    Article  PubMed  Google Scholar 

  77. •• Peltola H, Pääkkönen M, Kallio P, et al. Short- versus long-term antimicrobial treatment for acute hematogenous osteomyelitis of childhood: prospective, randomized trial on 131 culture-positive cases. Pediatr Infect Dis J. 2010;29(12):1123–8. This randomized trial found that a 20-day course of antibiotic therapy, with only a short period administered parenterally, was as effective as longer courses. However, this may not be directly applicable to populations with high rates of CA-MRSA, which was not a pathogen in this study.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Isaac Thomsen is employed as a Pediatric Infectious Diseases Clinical Fellow by Vanderbilt University Medical Center; C. Buddy Creech reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Buddy Creech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, I., Creech, C.B. Advances in the Diagnosis and Management of Pediatric Osteomyelitis. Curr Infect Dis Rep 13, 451–460 (2011). https://doi.org/10.1007/s11908-011-0202-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-011-0202-z

Keywords

Navigation