Skip to main content

Advertisement

Log in

Update on HIV Dementia and HIV-Associated Neurocognitive Disorders

  • Dementia (KS Marder, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The introduction of combined antiretroviral therapy (cART) has dramatically reduced the risk of central nervous system opportunistic infection and severe dementia secondary to HIV infection in the last two decades. However, a milder form of HIV-associated neurocognitive disorder (HAND) remains prevalent in the cART era and has a significant impact on patients’ quality of life. In this review, we outline updated research findings on investigating and monitoring cognitive impairment in HAND patients. The outcomes of recent research on the pathogenesis of HAND and how it overlaps with neurodegenerative diseases are discussed. Lastly, there is a brief discussion of the results of clinical trials using a brain-penetrating cART regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brew BJ. AIDS dementia complex. In: Brew BJ, editor. HIV neurology. Oxford: Oxford University Press; 2001.

    Google Scholar 

  2. McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. Lancet Neurol. 2005;4(9):543–55.

    Article  PubMed  Google Scholar 

  3. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, et al. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS. 2007;21:1915–21.

    Article  PubMed  Google Scholar 

  4. Cysique LA, Brew BJ. Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. J Neurovirol. 2011;17(2):176–83.

    Article  PubMed  Google Scholar 

  5. Hinkin CH, Castellon SA, Durvasula RS, Hardy DJ, Lam MN, Mason KI, et al. Medication adherence among HIV + adults: effects of cognitive dysfunction and regimen complexity. Neurology. 2002;59:1944–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Marcotte TD, Heaton RK, Wolfson T, Taylor MJ, Alhassoon O, Arfaa K, et al. The impact of HIV-related neuropsychological dysfunction on driving behavior. J Int Neuropsychol Soc. 1999;5(7):579–92.

    CAS  PubMed  Google Scholar 

  7. Albert SM, Marder K, Dooneief G, Bell K, Sano M, Todak G, et al. Neuropsychologic impairment in early HIV infection. A risk factor for work disability. Arch Neurol. 1995;52:525–30.

    Article  CAS  PubMed  Google Scholar 

  8. Wilkie FL, Goodkin K, Eisdorfer C, Feaster D, Morgan R, Fletcher MA, et al. Mild cognitive impairment and risk of mortality in HIV-1 infection. J Neuropsychiatry Clin Neurosci. 1998;10(2):125–32.

    CAS  PubMed  Google Scholar 

  9. Sacktor NC, Bacellar H, Hoover DR, Nance-Sproson TE, Selnes OA, Miller EN, et al. Psychomotor slowing in HIV infection: a predictor of dementia, AIDS and death. J Neurovirol. 1996;2:404–10.

    Article  CAS  PubMed  Google Scholar 

  10. Mayeux R, Stern Y, Tang MX, Todak G, Marder K, Sano M, et al. Mortality risks in gay men with human immunodeficiency virus infection and cognitive impairment. Neurology. 1993;43(1):176–82.

    Article  CAS  PubMed  Google Scholar 

  11. Cysique LA, Maruff P, Brew BJ. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol. 2004;10:350–7.

    Article  PubMed  Google Scholar 

  12. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17:3–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Valcour V, Watters MR, Williams AE, Sacktor N, McMurtray A, Shikuma C. Aging exacerbates extrapyramidal motor signs in the era of highly active antiretroviral therapy. J Neurovirol. 2008;14:362–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Tisch S, Brew B. Parkinsonism in HIV-infected patients on highly active antiretroviral therapy. Neurology. 2009;73:401–3.

    Article  PubMed  Google Scholar 

  15. Power C, Scenes OF, Grim JA, McArthur JC. HIV Dementia Scale: a rapid screening test. J Acquir Immune Defic Syndr Hum Retrovirol. 1995;8:273–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bottiggi KA, Chang JJ, Schmitt FA, Avison MJ, Mootoor Y, Nath A, et al. The HIV Dementia Scale: predictive power in mild dementia and HAART. J Neurol Sci. 2007;260:11–5.

    Article  PubMed  Google Scholar 

  17. Skinner S, Adewale AJ, DeBlock L, Gill MJ, Power C. Neurocognitive screening tools in HIV/AIDS: comparative performance among patients exposed to antiretroviral therapy. HIV Med. 2009;10:246–52.

    Article  CAS  PubMed  Google Scholar 

  18. Morgan EE, Woods SP, Scott JC, Childers M, Beck JM, Ellis RJ, et al. Predictive validity of demographically adjusted normative standards for the HIV Dementia Scale. J Clin Exp Neuropsychol. 2008;30:83–90.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sacktor NC, Wong M, Nakasujja N, Skolasky RL, Selnes OA, Musisi S, et al. The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS. 2005;19:1367–74.

    PubMed  Google Scholar 

  20. Njamnshi AK, Djientcheu Vde P, Fonsah JY, Yepnjio FN, Njamnshi DM, Muna WE. The International HIV Dementia Scale is a useful screening tool for HIV-associated dementia/cognitive impairment in HIV-infected adults in Yaounde-Cameroon. J Acquir Immune Defic Syndr. 2008;49:393–7.

    Article  PubMed  Google Scholar 

  21. Lu GM, Brew BJ, Siefried KJ, Draper B, Cysique LA. Is the HIV Dementia Scale a reliable tool for assessing HIV-related neurocognitive decline? J AIDS Clin Res. 2013;5:269.

    Google Scholar 

  22. Cysique LA, Maruff P, Darby D, Brew BJ. The assessment of cognitive function in advanced HIV-1 infection and AIDS dementia complex using a new computerised cognitive test battery. Arch Clin Neuropsychol. 2006;21:185–94.

    Article  PubMed  Google Scholar 

  23. Maruff P, Thomas E, Cysique LA, Brew B, Collie A, Snyder P, et al. Validity of the CogState brief battery: relationship to standardized tests and sensitivity to cognitive impairment in mild traumatic brain injury, schizophrenia, and AIDS dementia complex. Arch Clin Neuropsychol. 2009;24:165–78.

    Article  PubMed  Google Scholar 

  24. Edén A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010;202:1819–25.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG, et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50(5):773–8.

    Article  PubMed  Google Scholar 

  26. Peluso MJ, Ferretti F, Peterson J, Lee E, Fuchs D, Boschini A, et al. Cerebrospinal fluid HIV escape associated with progressive neurologic dysfunction in patients on antiretroviral therapy with well controlled plasma viral load. AIDS. 2012;26:1765–74.

    Article  CAS  PubMed  Google Scholar 

  27. Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A, et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther. 2010;7:15.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Peluso MJ, Meyerhoff DJ, Price RW, Peterson J, Lee E, Young AC, et al. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis. 2013;207:1703–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bandaru VV, Mielke MM, Sacktor N, McArthur JC, Grant I, Letendre S, et al. A lipid storage–like disorder contributes to cognitive decline in HIV-infected subjects. Neurology. 2013;81(17):1492–9.

    Article  CAS  PubMed  Google Scholar 

  30. Chang L, Feger U, Ernst TM. Bioimaging. In: Gendelman HE, Grant I, Everall IP, Fox HS, Gelbard HA, Lipton SA, Swindells S, editors. The neurology of AIDS. Oxford: Oxford University Press; 2012. p. 763–97.

    Google Scholar 

  31. Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. Am J Neuroradiol. 2001;22:277–83.

    CAS  PubMed  Google Scholar 

  32. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV. Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS. 2009;23:1977–85.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB. Diffusion alterations in corpus callosum of patients with HIV. Am J Neuroradiol. 2006;27:656–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Chen Y, An H, Zhu H, Stone T, Smith JK, Hall C, et al. White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV + patients. Neuroimage. 2009;47(4):1154–62.

    Article  PubMed  Google Scholar 

  35. Zhu T, Zhong J, Hu R, Tivarus M, Ekholm S, Harezlak J, et al. Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study. J Neurovirol. 2013;19(1):10–23.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wright PW, Heaps JM, Shimony JS, Thomas JB, Ances BM. The effects of HIV and combination antiretroviral therapy on white matter integrity. AIDS. 2012;26:1501–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Thurnher MM, Castillo M, Stadler A, Rieger A, Schmid B, Sundgren PC. Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. Am J Neuroradiol. 2005;26:2275–81.

    PubMed  Google Scholar 

  38. Chang L, Wong V, Nakama H, Watters M, Ramones D, Miller EN, et al. Greater than age-related changes in brain diffusion of HIV patients after 1 year. J NeuroImmune Pharmacol. 2008;3:265–74.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO. White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatry Res. 2001;106:15–24.

    Article  CAS  PubMed  Google Scholar 

  40. Melrose RJ, Tinaz S, Castelo JM, Courtney MG, Stern CE. Compromise to fronto-stratial functioning in HIV: An FMRI investigation of the semantic event sequencing. Behav Brain Res. 2008;188:337–47.

    Article  PubMed  Google Scholar 

  41. Ances BM, Roc AC, Wang J, Korczykowski M, Okawa J, Stern J, et al. Caudate blood flow and volume are reduced in HIV + neurocognitively impaired patients. Neurology. 2006;66:862–6.

    Article  CAS  PubMed  Google Scholar 

  42. Ernst T, Chang L, Jovicich J, Ames N, Arnold S. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology. 2002;59:1343–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ances BM, Sisti D, Vaida F, Liang CL, Leontiev O, Perthen JE, et al. Resting cerebral blood flow: a potential biomarker of the effects of HIV in the brain. Neurology. 2009;73:702–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ances BM, Roc AC, Korczykowski M, Wolf RL, Kolson DL. Combination antiretroviral therapy modulates the blood oxygen level-dependent amplitude in human immunodeficiency virus-seropositive patients. J Neurovirol. 2008;14:418–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Silva AC, Rodrigues BS, Micheletti AM, Tostes Jr S, Meneses AC, Silva-Vergara ML, et al. Neuropathology of AIDS: an autopsy review of 284 cases from Brazil comparing the finding pre- and post-HAART (highly active antiretroviral therapy) and pre- and post-mortem correlation. AIDS Res Treat. 2012. doi:10.1155/2012/186850.

    PubMed Central  PubMed  Google Scholar 

  46. Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, et al. Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol. 2009;15:360–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Churchill MJ, Wesselingh SL, Cowley D, Pardo CA, McArthur JC, Brew BJ, et al. Extensive astrocyte infection is prominent in human immunodeficiency virusassociated dementia. Ann Neurol. 2009;66:253–8.

    Article  PubMed  Google Scholar 

  48. Wang Z, Pekarskaya O, Bencheikh M, Chao W, Gelbard HA, Ghorpade A, et al. Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology. 2003;312:60–73.

    Article  CAS  PubMed  Google Scholar 

  49. Patton HK, Zhou ZH, Bubien JK, Benveniste EN, Benos DJ. gp120-induced alterations of human astrocyte function: Na+/H+ exchange, K+ conductance, and glutamate flux. Am J Physiol Cell Physiol. 2000;279:C700–8.

    CAS  PubMed  Google Scholar 

  50. Eugenin EA, Clements JE, Zink MC, Berman JW. Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci. 2011;31:9456–65. Eugenin et al. demonstrated how blood–brain barrier disruption and bystander apoptosis are carried out by infected astrocytes via gap junctions. This finding offer a possible explanation for cognitive decline despite effective serum viral suppression by cART.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Eugenin EA, Berman JW. Cytochrome c dysregulation induced by HIV infection of astrocytes results in bystander apoptosis of uninfected astrocytes by an IP3 and calcium-dependent mechanism. J Neurochem. 2013;127(5):644–51.

    Article  CAS  PubMed  Google Scholar 

  52. Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis. 2011;43(1):38–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 2007;120(23):4081–91.

    Article  CAS  PubMed  Google Scholar 

  54. Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, et al. Xbp-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 2009;23:2294–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Zhou D, Masliah E, Spector SA. Autophagy is increased in postmortem brains of persons with HIV-1-associated encephalitis. J Infect Dis. 2011;203(11):1647–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Alirezaei M, Kiosses WB, Flynn CT, Brady NR, Fox HS. Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS One. 2008;3(8):e2906.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol. 2005;64(2):113–22.

    PubMed  Google Scholar 

  58. Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, et al. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One. 2010;5(2):e9313.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Keller JN, Hanni KB, Markesbery WR. Impaired proteasome function in Alzheimer’s disease. J Neurochem. 2000;75:436–9.

    Article  CAS  PubMed  Google Scholar 

  60. Keck S, Nitsch R, Grune T, Ullrich O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem. 2003;85:115–22.

    Article  CAS  PubMed  Google Scholar 

  61. Ardley HC, Scott GB, Rose SA, Tan NG, Robinson PA. UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson's disease. J Neurochem. 2004;90:379–91.

    Article  CAS  PubMed  Google Scholar 

  62. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol. 2003;179:38–46.

    Article  CAS  PubMed  Google Scholar 

  63. Mendonca DM, Chimelli L, Martinez AM. Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis. Neurosci Lett. 2006;404:315.

    Article  CAS  PubMed  Google Scholar 

  64. Gelman BB, Lisinicchia JG, Chen T, Johnson KM, Jennings K, Freeman Jr DH, et al. Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J NeuroImmune Pharmacol. 2012;11:686–700.

    Article  Google Scholar 

  65. Nguyen TP, Soukup VM, Gelman BB. Persistent hijacking of brain proteasomes in HIV-associated dementia. Am J Pathol. 2010;6(2):893–902.

    Article  Google Scholar 

  66. Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013;80:1415–23. Desplats et al. offered a new concept of latent HIV infection in the CNS that could contribute to ongoing neuroinflammation without active HIV viral replication.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65:65–70.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Letendre S, FitzSimons C, Ellis R, Clifford D, Collier A, Gelman B, et al. Correlates of CSF viral load sin 1221 volunteers in the CHARTER cohort. In: 17th conference on retroviruses and opportunistic infections, San Francisco, CA, USA; 2010. Abstract 430.

  69. Koopmans PP, Ellis R, Best BM, Letendre S. Should antiretroviral therapy for HIV infection be tailored for intracerebral penetration? Neth J Med. 2009;67(6):206–11.

    CAS  PubMed  Google Scholar 

  70. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23:1359–66.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Cusini A, Vernazza PL, Yerly S, Decosterd LA, Ledergerber B, Fux CA, et al. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr. 2013;62:28–35.

    Article  CAS  PubMed  Google Scholar 

  72. Rawson T, Muir D, Mackie NE, Garvey LJ, Everitt A, Winston A. Factors associated with cerebrospinal fluid HIV RNA in HIV infected subjects undergoing lumbar puncture examination in a clinical setting. J Infect. 2012;65:239–45.

    Article  PubMed  Google Scholar 

  73. Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS. 2011;25:357–65.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Cysique LA, Vaida F, Letendre S, Gibson S, Cherner M, Woods SP, et al. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology. 2009;73:342–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Tozzi V, Balestra P, Salvatori MF, Vlassi C, Liuzzi G, Giancola ML, et al. Changes in cognition during antiretroviral therapy: comparison of 2 different ranking systems to measure antiretroviral drug efficacy on HIV-associated neurocognitive disorders. J Acquir Immune Defic Syndr. 2009;52:56–63.

    Article  CAS  PubMed  Google Scholar 

  76. Ciccarelli N, Fabbiani M, Colafigli M, Trecarichi EM, Silveri MC, Cauda R, et al. Revised central nervous system neuropenetration-effectiveness score is associated with cognitive disorders in HIV-infected patients with controlled plasma viraemia. Antivir Ther. 2013;18:153–60.

    Article  PubMed  Google Scholar 

  77. Casado JL, Marín A, Moreno A, Iglesias V, Perez-Elías MJ, Moreno S, et al. Central nervous system antiretroviral penetration and cognitive functioning in largely pretreated HIV-infected patients. J Neurovirol. 2014;20(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  78. Vassallo M, Durant J, Biscay V, Lebrun-Frenay C, Dunais B, Laffon M, et al. Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders? AIDS. 2014;28(4):493–501.

    Article  CAS  PubMed  Google Scholar 

  79. Cross HM, Combrinck MI, Joska JA. HIV-associated neurocognitive disorders: antiretroviral regimen, central nervous system penetration effectiveness, and cognitive outcomes. S Afr Med J. 2013;103(10):758–62.

    Article  CAS  PubMed  Google Scholar 

  80. Ellis RJ, Letendre S, Vaida F, Haubrich R, Heaton RK, Sacktor N, et al. Randomized trial of CNS-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis. 2014;58(7):1015–22.

    Article  CAS  PubMed  Google Scholar 

  81. Cysique LA, Waters EK, Brew BJ. Central nervous system antiretroviral efficacy in HIV infection: a qualitative and quantitative review and implications for future research. BMC Neurol. 2011;11(1):148.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Brew BJ, Halman M, Catalan J, Sacktor N, Price RW, Brown S, et al. Factors in AIDS dementia complex trial design: results and lessons from the abacavir trial. PLoS Clin Trials. 2007;2(3):e13.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Gray LR, Tachedjian G, Ellett AM, Roche MJ, Cheng WJ, Guillemin GJ, et al. The NRTIs lamivudine, stavudine and zidovudine have reduced HIV-1 inhibitory activity in astrocytes. PLoS One. 2013;8(4):e62196. This study demonstrated a different inhibitory efficacy profile in targeting astrocyte HIV infection by various ARVs. It provides new considerations regarding CNS-penetrating effectiveness of individual ARVs.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Mind Exchange Group. Assessment, diagnosis, and treatment of HIV-associated neurocognitive disorder: a consensus report of the mind exchange program. Clin Infect Dis. 2013;56(7):1004–17.

    Article  Google Scholar 

  85. Mothobi NZ, Brew BJ. Neurocognitive dysfunction in the highly active antiretroviral therapy era. Curr Opin Infect Dis. 2012;25(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  86. Cysique LA, Maruff P, Brew BJ. Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology. 2006;66:1447–50.

    Article  PubMed  Google Scholar 

  87. Sevigny JJ, Albert SM, McDermott MP, McArthur JC, Sacktor N, Conant K, et al. Evaluation of HIV RNA and markers of immune activation as predictors of HIV-associated dementia. Neurology. 2004;63:2084–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Bruce J. Brew and Phillip Chan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Brew.

Additional information

This article is part of the Topical Collection on Dementia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brew, B.J., Chan, P. Update on HIV Dementia and HIV-Associated Neurocognitive Disorders. Curr Neurol Neurosci Rep 14, 468 (2014). https://doi.org/10.1007/s11910-014-0468-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0468-2

Keywords

Navigation