Skip to main content

Advertisement

Log in

Bone Density and Dental External Apical Root Resorption

  • Craniofacial Skeleton (WE Roberts, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

When orthodontic patients desire shorter treatment times with aesthetic results and long-term stability, it is important for the orthodontist to understand the potential limitations and problems that may arise during standard and/or technology-assisted accelerated treatment. Bone density plays an important role in facilitating orthodontic tooth movement (OTM), such that reductions in bone density can significantly increase movement velocity. Lifestyle, genetic background, environmental factors, and disease status all can influence a patients’ overall health and bone density. In some individuals, these factors may create specific conditions that influence systemic-wide bone metabolism. Both genetic variation and the onset of a bone-related disease can influence systemic bone density and local bone density, such as observed in the mandible and maxilla. These types of localized density changes can affect the rate of OTM and may also influence the risk of unwanted outcomes, i.e., the occurrence of dental external apical root resorption (EARR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hernandez CJ, Guss JD, Luna M, Goldring SR. Links between the microbiome and bone. J Bone Miner Res. 2016.

  2. Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 2015;13(2):125–30.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weaver C, Gordon C, Janz K, Kalkwarf H, Lappe J, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takaishi Y, Arita S, Honda M, Sugishita T, Kamada A, Ikeo T, et al. Assessment of alveolar bone mineral density as a predictor of lumbar fracture probability. Adv Ther. 2013;30(5):487–502.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE. Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofac Orthop. 2010;137(4):462–76. discussion 12A.

  7. Hartsfield JK. Pathways in external apical root resorption associated with orthodontia. Orthod Craniofac Res. 2009;12(3):236–42.

    Article  PubMed  Google Scholar 

  8. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts WE, Roberts JA, Epker BN, Burr DB, Hartsfield JK, editors. Remodeling of mineralized tissues, part I: the Frost legacy. Semin Orthod. Elsevier; 2006.

  10. Roberts WE. Bone physiology of tooth movement, ankylosis, and osseointegration. Semin Orthod. 2000;6:173–82.

    Article  Google Scholar 

  11. Roberts WE, Epker BN, Burr DB, Hartsfield JK, Roberts JA, editors. Remodeling of mineralized tissues, part II: control and pathophysiology. Semin Orthod. Elsevier; 2006.

  12. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod. 1984;86(2):95–111.

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida N, Koga Y, Peng CL, Tanaka E, Kobayashi K. In vivo measurement of the elastic modulus of the human periodontal ligament. Med Eng Phys. 2001;23(8):567–72.

    Article  CAS  PubMed  Google Scholar 

  14. Poppe M, Bourauel C, Jager A. Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop. 2002;63(5):358–70.

    Article  PubMed  Google Scholar 

  15. Goldie RS, King GJ. Root resorption and tooth movement in orthodontically treated, calcium-deficient, and lactating rats. Am J Orthod. 1984;85(5):424–30.

    Article  CAS  PubMed  Google Scholar 

  16. Katona TR, Paydar NH, Akay HU, Roberts WE. Stress analysis of bone modeling response to rat molar orthodontics. J Biomech. 1995;28(1):27–38.

    CAS  PubMed  Google Scholar 

  17. Al-Qawasmi RA, Hartsfield Jr JK, Everett ET, Flury L, Liu L, Foroud TM, et al. Genetic predisposition to external apical root resorption. Am J Orthod Dentofac Orthop. 2003;123(3):242–52.

    Article  Google Scholar 

  18. Srivicharnkul P, Kharbanda OP, Swain MV, Petocz P, Darendeliler MA. Physical properties of root cementum: part 3. Hardness and elastic modulus after application of light and heavy forces. Am J Orthod Dentofac Orthop. 2005;127(2):168–76.

    Article  Google Scholar 

  19. Viecilli RF, Katona TR, Chen J, Hartsfield Jr JK, Roberts WE. Three-dimensional mechanical environment of orthodontic tooth movement and root resorption. Am J Orthod Dentofac Orthop. 2008;133(6):791 e11–26.

    Article  Google Scholar 

  20. Field C, Ichim I, Swain MV, Chan E, Darendeliler MA, Li W, et al. Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofac Orthop. 2009;135(2):174–81.

    Article  Google Scholar 

  21. Vikram NR, Senthil Kumar KS, Nagachandran KS, Hashir YM. Apical stress distribution on maxillary central incisor during various orthodontic tooth movements by varying cemental and two different periodontal ligament thicknesses: a FEM study. Indian J Dent Res. 2012;23(2):213–20.

    Article  PubMed  Google Scholar 

  22. Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am J Orthod Dentofac Orthop. 2001;119(3):307–12.

    Article  CAS  Google Scholar 

  23. Sharp L, Anderson S, Sammon P, Klemenz L, Cohen D, Drummond J. Local and systemic effects of IL-1 on interradicular alveolar bone. J Dent Res. 1991;70:596.

    Google Scholar 

  24. King G, Fischlschweiger W. The effect of force magnitude on extractable bone resorptive activity and cemental cratering in orthodontic tooth movement. J Dent Res. 1982;61(6):775–9.

    Article  CAS  PubMed  Google Scholar 

  25. Endres S, Cannon JG, Ghorbani R, Dempsey RA, Sisson SD, Lonnemann G, et al. In vitro production of IL 1β, IL 1α, TNF and IL 2 in healthy subjects: distribution, effect of cyclooxygenase inhibition and evidence of independent gene regulation. Eur J Immunol. 1989;19(12):2327–33.

    Article  CAS  PubMed  Google Scholar 

  26. Pociot F, Mølvig J, Wogensen L, Worsaae H, Nerup J. A Taql polymorphism in the human interleukin‐1β (IL‐1β) gene correlates with IL‐1β secretion in vitro. Eur J Clin Investig. 1992;22(6):396–402.

    Article  CAS  Google Scholar 

  27. Di Giovine F, Cork M, Crane A, Mee J, Duff G. Novel genetic association of an IL-1B gene variation a + 3953 with IL-1B protein production and psoriasis. Cytokine. 1995;7(6):606.

    Google Scholar 

  28. Kornman KS, Crane A, Wang HY, Giovlne FS, Newman MG, Pirk FW, et al. The interleukin‐1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol. 1997;24(1):72–7.

    Article  CAS  PubMed  Google Scholar 

  29. Wu X, Offenbacher S, Lόpez N, Chen D, Wang HY, Rogus J, et al. Association of interleukin‐1 gene variations with moderate to severe chronic periodontitis in multiple ethnicities. J Periodontal Res. 2015;50(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  30. Iglesias-Linares A, Yanez-Vico R, Ballesta-Mudarra S, Ortiz-Ariza E, Ortega-Rivera H, Mendoza-Mendoza A, et al. Postorthodontic external root resorption is associated with IL1 receptor antagonist gene variations. Oral Dis. 2012;18(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  31. Linhartova P, Cernochova P, Izakovicova Holla L. IL1 gene polymorphisms in relation to external apical root resorption concurrent with orthodontia. Oral Dis. 2013;19(3):262–70.

    CAS  PubMed  Google Scholar 

  32. Hurme M, Santtila S. IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-1Ra and IL-1beta genes. Eur J Immunol. 1998;28(8):2598–602.

    Article  CAS  PubMed  Google Scholar 

  33. Danis V, Millington M, Hyland V, Grennan D. Cytokine production by normal human monocytes: inter‐subject variation and relationship to an IL‐1 receptor antagonist (IL‐1Ra) gene polymorphism. Clin Exp Immunol. 1995;99(2):303–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vamvakopoulos J, Green C, Metcalfe S. Genetic control of IL‐1β bioactivity through differential regulation of the IL‐1 receptor antagonist. Eur J Immunol. 2002;32(10):2988–96.

    Article  CAS  PubMed  Google Scholar 

  35. Bastos Lages EM, Drummond AF, Pretti H, Costa FO, Lages EJ, Gontijo AI, et al. Association of functional gene polymorphism IL-1beta in patients with external apical root resorption. Am J Orthod Dentofac Orthop. 2009;136(4):542–6.

    Article  Google Scholar 

  36. ••Sharab LY, Morford LA, Dempsey J, Falcao-Alencar G, Mason A, Jacobson E, et al. Genetic and treatment-related risk factors associated with external apical root resorption (EARR) concurrent with orthodontia. Orthod Craniofac Res. 2015;18 Suppl 1:71–82. Paper combines analysis of multiple treatment and genetic factors.

    Article  CAS  PubMed  Google Scholar 

  37. ••Pereira S, Lavado N, Nogueira L, Lopez M, Abreu J, Silva H. Polymorphisms of genes encoding P2X7R, IL-1B, OPG and RANK in orthodontic-induced apical root resorption. Oral Dis. 2014;20(7):659–67. Paper analyzes multiple genetic markers in two pathways.

    Article  CAS  PubMed  Google Scholar 

  38. Shank S, Shank K, Caudill R, Foroud T, Wetherill L, Weaver M et al. Evaluation of SNPs in orthodontic patients with root resorption. J Dent Res. 2007; 86(Spec Iss A, abstract #1922).

  39. Duan X, Yang T, Zhang Y, Wen X, Xue Y, Zhou M. Odontoblast-like MDPC-23 cells function as odontoclasts with RANKL/M-CSF induction. Arch Oral Biol. 2013;58(3):272–8.

    Article  CAS  PubMed  Google Scholar 

  40. Fontana ML, de Souza CM, Bernardino JF, Hoette F, Hoette ML, Thum L, et al. Association analysis of clinical aspects and vitamin D receptor gene polymorphism with external apical root resorption in orthodontic patients. Am J Orthod Dentofac Orthop. 2012;142(3):339–47.

    Article  Google Scholar 

  41. •Iglesias-Linares A, Yanez-Vico R, Moreno-Fernandez A, Bueso Madrid D, Solano-Reina E, Mendoza-Mendoza M et al. Genetic variants of epigenetic regulators (HDACs) influence predisposition to orthodontic EARR. J Dent Res. 2015; 94(Spec Iss A, abstract #2121921). This abstract is the first indication that epigenetics can affect EARR.

  42. López JE, Sullivan ED, Fierke CA. Metal-dependent deacetylases: cancer and epigenetic regulators. ACS Chem Biol. 2016;11(3):706–16.

    Article  CAS  PubMed  Google Scholar 

  43. Kang JS, Alliston T, Delston R, Derynck R. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J. 2005;24(14):2543–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duncan HF, Smith AJ, Fleming GJ, Cooper PR. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells. J Endod. 2012;38(3):339–45.

    Article  PubMed  Google Scholar 

  45. Wein MN, Spatz J, Nishimori S, Doench J, Root D, Babij P, et al. HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J Bone Miner Res. 2015;30(3):400–11.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nishiyama Y, Matsumoto T, Lee J-W, Saitou T, Imamura T, Moriyama K, et al. Changes in the spatial distribution of sclerostin in the osteocytic lacuno-canalicular system in alveolar bone due to orthodontic forces, as detected on multimodal confocal fluorescence imaging analyses. Arch Oral Biol. 2015;60(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  47. Guo Y, He S, Gu T, Liu Y, Chen S. Genetic and clinical risk factors of root resorption associated with orthodontic treatment. Am J Orthod Dentofac Orthop. 2016;150(2):283–9.

    Article  Google Scholar 

  48. Gülden N, Eggermann T, Zerres K, Beer M, Meinelt A, Diedrich P. Interleukin-1 polymorphisms in relation to external apical root resorption (EARR). J Orofacial Orthop/Fortschritte der Kieferorthopädie. 2009;70(1):20–38.

    Article  Google Scholar 

  49. Iglesias‐Linares A, Yañez‐Vico R, Ballesta S, Ortiz‐Ariza E, Mendoza‐Mendoza A, Perea E, et al. Interleukin 1 gene cluster SNPs (rs1800587, rs1143634) influences post‐orthodontic root resorption in endodontic and their contralateral vital control teeth differently. Int Endod J. 2012;45(11):1018–26.

    Article  PubMed  Google Scholar 

  50. Iglesias-Linares A, Yañez-Vico R-M, Ortiz-Ariza E, Ballesta S, Mendoza-Mendoza A, Perea E, et al. Postorthodontic external root resorption in root-filled teeth is influenced by interleukin-1β polymorphism. J Endod. 2012;38(3):283–7.

    Article  PubMed  Google Scholar 

  51. Pereira S, Nogueira L, Canova F, Lopez M, Silva HC. IRAK1 variant is protective for orthodontic-induced external apical root resorption. Oral Dis. 2016; in press (doi: 10.1111/odi.12514). This paper available online combines analysis of multiple treatment and genetic factors.

  52. Iglesias-Linares A, Yañez-Vico RM, Ballesta-Mudarra S, Ortiz-Ariza E, Mendoza-Mendoza A, Perea-Pérez E, et al. Interleukin 1 receptor antagonist (IL1RN) genetic variations condition post-orthodontic external root resorption in endodontically-treated teeth. Histol Histopathol. 2013;28:767–73.

    CAS  PubMed  Google Scholar 

  53. Linhartova PB, Cernochova P, Kastovsky J, Vrankova Z, Sirotkova M, Izakovicova Holla L. Genetic determinants and post-orthodontic external apical root resorption in Czech children. Oral Dis. 2016; in press (doi:10.1111/odi.12564.

  54. Al-Qawasmi RA, Hartsfield Jr JK, Everett ET, Flury L, Liu L, Foroud TM, et al. Genetic predisposition to external apical root resorption in orthodontic patients: linkage of chromosome-18 marker. J Dent Res. 2003;82(5):356–60.

    Article  CAS  PubMed  Google Scholar 

  55. Iglesias-Linares A, Yañez-Vico RM, Moreno-Fernández AM, Mendoza-Mendoza A, Orce-Romero A, Solano-Reina E. Osteopontin gene SNPs (rs9138, rs11730582) mediate susceptibility to external root resorption in orthodontic patients. Oral Dis. 2014;20(3):307–12.

    Article  CAS  PubMed  Google Scholar 

  56. Aminoshariae A, Aminoshariae A, Valiathan M, Kulild JC. Association of genetic polymorphism and external apical root resorption: a systematic review. Angle Orthod. 2016.

  57. Braun TM, Doucette-Stamm L, Duff GW, Kornman KS, Giannobile WV. Counterpoint: risk factors, including genetic information, add value in stratifying patients for optimal preventive dental care. J Am Dent Assoc. 2015;146(3):174–8.

    Article  PubMed  Google Scholar 

  58. Diehl SR, Kuo F, Hart TC. Interleukin 1 genetic tests provide no support for reduction of preventive dental care. J Am Dent Assoc. 2015;146(3):164–73.e4.

    Article  PubMed  Google Scholar 

  59. Hartsfield Jr JK. Personalized orthodontics: limitations and possibilities in orthodontic practice. In: Krishnan V, Davidovitch Z, editors. Biological Mechanisms of Tooth Movement. Wiley; 2015. p. 164–72.

  60. Haruyama N, Igarashi K, Saeki S, Otsuka-Isoya M, Shinoda H, Mitani H. Estrous-cycle-dependent variation in orthodontic tooth movement. J Dent Res. 2002;81(6):406–10.

    Article  CAS  PubMed  Google Scholar 

  61. Cannon JG, Dinarello CA. Increased plasma interleukin-1 activity in women after ovulation. Science. 1985;227(4691):1247–9.

    Article  CAS  PubMed  Google Scholar 

  62. Angstwurm MW, Gärtner R, Ziegler-Heitbrock HL. Cyclic plasma IL-6 levels during normal menstrual cycle. Cytokine. 1997;9(5):370–4.

    Article  CAS  PubMed  Google Scholar 

  63. Manolagas SC, O'Brien CA, Almeida M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol. 2013;9(12):699–712.

  64. Macari S, Duffles LF, Queiroz-Junior CM, Madeira MF, Dias GJ, Teixeira MM, et al. Oestrogen regulates bone resorption and cytokine production in the maxillae of female mice. Arch Oral Biol. 2015;60(2):333–41.

    Article  CAS  PubMed  Google Scholar 

  65. Ikeda K, Tsukui T, Horie-Inoue K, Inoue S. Conditional expression of constitutively active estrogen receptor alpha in osteoblasts increases bone mineral density in mice. FEBS Lett. 2011;585(9):1303–9.

    Article  CAS  PubMed  Google Scholar 

  66. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, et al. Estrogen prevents bone loss via estrogen receptor α and induction of Fas ligand in osteoclasts. Cell. 2007;130(5):811–23.

    Article  CAS  PubMed  Google Scholar 

  67. Walker VR, Korach KS. Estrogen receptor knockout mice as a model for endocrine research. ILAR J. 2004;45(4):455–61.

    Article  CAS  PubMed  Google Scholar 

  68. Imai Y, Youn MY, Kondoh S, Nakamura T, Kouzmenko A, Matsumoto T, et al. Estrogens maintain bone mass by regulating expression of genes controlling function and life span in mature osteoclasts. Ann NY Acad Sci. 2009;1173(s1):E31–9.

    Article  CAS  PubMed  Google Scholar 

  69. Lewis-Wambi JS, Jordan VC. Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res. 2009;11(3):1.

    Article  CAS  Google Scholar 

  70. Keller J, Catala-Lehnen P, Wintges K, Schulze J, Bickert T, Ito W, et al. Transgenic over-expression of interleukin-33 in osteoblasts results in decreased osteoclastogenesis. Biochem Biophys Res Commun. 2012;417(1):217–22.

    Article  CAS  PubMed  Google Scholar 

  71. Lima IL, Macari S, Madeira MF, Rodrigues LF, Colavite PM, Garlet GP, et al. Osteoprotective effects of IL-33/ST2 link to osteoclast apoptosis. Am J Pathol. 2015;185(12):3338–48.

    Article  CAS  PubMed  Google Scholar 

  72. Yamashiro T, Takano-Yamamoto T. Influences of ovariectomy on experimental tooth movement in the rat. J Dent Res. 2001;80(9):1858–61.

    Article  CAS  PubMed  Google Scholar 

  73. Sirisoontorn I, Hotokezaka H, Hashimoto M, Gonzales C, Luppanapornlarp S, Darendeliler MA, et al. Tooth movement and root resorption; the effect of ovariectomy on orthodontic force application in rats. Angle Orthod. 2011;81(4):570–7.

    Article  PubMed  Google Scholar 

  74. Seifi M, Ezzati B, Saedi S, Hedayati M. The effect of ovariectomy and orchiectomy on orthodontic tooth movement and root resorption in Wistar rats. J Dent (Shiraz). 2015;16(4):302–9.

    Google Scholar 

Download references

Acknowledgments

• This study PI13/00310 was supported by the Instituto de Salud Carlos III (Plan Estatal de I+D+i 2013–2016) and co-financed by the European Development Regional Fund “A way to achieve Europe” (ERDF)

• USA NIH P30GM110788 COBRE III (LAM, JKH) and the University of Kentucky E. Preston Hicks Endowed Professorship (JKH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Kennedy Hartsfield Jr.

Ethics declarations

Conflict of Interest

Alejandro Iglesias-Linares reports grants from Instituto de Salud Carlos III and ERDF during the conduct of the study. Lorri Morford reports grants from National Institutes of Health, during the conduct of the study. Jim Hartsfield reports grants from National Institutes of Health, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Craniofacial Skeleton

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iglesias-Linares, A., Morford, L.A. & Hartsfield, J.K. Bone Density and Dental External Apical Root Resorption. Curr Osteoporos Rep 14, 292–309 (2016). https://doi.org/10.1007/s11914-016-0340-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0340-1

Keywords

Navigation