Skip to main content

Advertisement

Log in

Review of Secondary Causes of Osteoporotic Fractures Due to Diabetes and Spinal Cord Injury

  • Orthopedic Management of Fractures (M Kacena and L Gerstenfeld, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to gain a better understanding of osteoporotic fractures and the different mechanisms that are driven in the scenarios of bone disuse due to spinal cord injury and osteometabolic disorders due to diabetes.

Recent Findings

Despite major advances in understanding the pathogenesis, prevention, and treatment of osteoporosis, the high incidence of impaired fracture healing remains an important complication of bone loss, leading to marked impairment of the health of an individual and economic burden to the medical system.

Summary

This review underlines several pathways leading to bone loss and increased risk for fractures. Specifically, we addressed the different mechanisms leading to bone loss after a spinal cord injury and diabetes. Finally, it also encompasses the changes responsible for impaired bone repair in these scenarios, which may be of great interest for future studies on therapeutic approaches to treat osteoporosis and osteoporotic fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int. 1994;4:368–81. https://doi.org/10.1007/bf01622200.

    Article  CAS  Google Scholar 

  2. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8:136. https://doi.org/10.1007/s11657-013-0136-1.

    Article  CAS  PubMed Central  Google Scholar 

  3. United Nations. World Population Prospects: The 2015 Revision United Nations Economic and Social Affairs 2015. https://doi.org/10.1007/s13398-014-0173-7.2.

  4. Curtis EM, Moon RJ, Harvey NC, Cooper C. Reprint of: the impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Int J Orthop Trauma Nurs. 2017;26:7–17. https://doi.org/10.1016/j.ijotn.2017.04.004.

    Article  PubMed Central  Google Scholar 

  5. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;15:3318–25. https://doi.org/10.1172/JCI27071.

    Article  CAS  Google Scholar 

  6. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19. https://doi.org/10.1016/s0092-8674(00)80209-3.

    Article  CAS  Google Scholar 

  7. Hanada R, Hanada T, Sigl V, Schramek D, Penninger JM. RANKL/RANK-beyond bones. J Mol Med. 2011;89:647–56. https://doi.org/10.1007/s00109-011-0749-z.

    Article  CAS  Google Scholar 

  8. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11(5):401–19. https://doi.org/10.1038/nrd3705.

    Article  CAS  Google Scholar 

  9. Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46. https://doi.org/10.1038/nm.4076.

    Article  CAS  Google Scholar 

  10. Drake MT, Khosla S. Hormonal and systemic regulation of sclerostin. Bone. 2017;96:8–17. https://doi.org/10.1016/j.bone.2016.12.004.

    Article  CAS  Google Scholar 

  11. Al-Barghouthi BM, Farber CR. Dissecting the genetics of osteoporosis using systems approaches. Trends Genet. 2019;35(1):55–67. https://doi.org/10.1016/j.tig.2018.10.004.

    Article  CAS  Google Scholar 

  12. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501. https://doi.org/10.1038/ng.2249.

    Article  CAS  PubMed Central  Google Scholar 

  13. Allen HL, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–8. https://doi.org/10.1038/nature09410.

    Article  CAS  Google Scholar 

  14. Uda Y, Azab E, Sun N, Shi C, Pajevic PD. Osteocyte Mechanobiology. Curr Osteoporos Rep. 2017;15:318–25. https://doi.org/10.1007/s11914-017-0373-0.

    Article  PubMed Central  Google Scholar 

  15. Li B, Zhao J, Xiong MJ, Min LG, Zhang Y, Sheng XG, et al. Overexpression of DNMT1 leads to hypermethylation of H19 promoter and inhibition of Erk signaling pathway in disuse osteoporosis. Bone. 2018;111:82–91. https://doi.org/10.1016/j.bone.2018.03.017.

    Article  CAS  Google Scholar 

  16. Li B, Liu J, Zhao J, Ma JX, Jia HB, Zhang Y, et al. LncRNA-H19 modulates Wnt/β-catenin signaling by targeting Dkk4 in hindlimb unloaded rat. Orthop Surg. 2017;9:319–27. https://doi.org/10.1111/os.12321.

    Article  PubMed Central  Google Scholar 

  17. Moridera K, Uchida S, Tanaka S, Menuki K, Utsunomiya H, Yamaoka K, et al. Skeletal unloading reduces cluster of differentiation (CD) 38 expression in the bone marrow and osteoblasts of mice. J Orthop Sci. 2019;S0949-2658:30120–4. https://doi.org/10.1016/j.jos.2019.03.023.

    Article  Google Scholar 

  18. Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, et al. Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling. Nature. 2002;417:664–7. https://doi.org/10.1038/nature756.

    Article  CAS  Google Scholar 

  19. Morse LR, Sudhakar S, Lazzari AA, Tun C, Garshick E, Zafonte R, et al. Sclerostin: a candidate biomarker of SCI-induced osteoporosis. Osteoporos Int. 2013;24:961–8. https://doi.org/10.1007/s00198-012-2072-0.

    Article  CAS  Google Scholar 

  20. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6:e25900. https://doi.org/10.1371/journal.pone.0025900.

    Article  CAS  PubMed Central  Google Scholar 

  21. Maïmoun L, Couret I, Micallef JP, Peruchon E, Mariano-Goulart D, Rossi M, et al. Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism. 2002;51(8):958–63. https://doi.org/10.1053/meta.2002.34013.

    Article  CAS  Google Scholar 

  22. •• Butezloff MM, Volpon JB, JPB X, Astolpho K, Correlo VM, Reis RL, et al. Gene expression changes are associated with severe bone loss and deficient fracture callus formation in rats with complete spinal cord injury. Spinal Cord. 2019. https://doi.org/10.1038/s41393-019-0377-yThe authors evidenced an important uncoupled bone turnover in SCI rats, showing a significant decrease in bone formation, associated with a large increase in bone resorption. Furthermore, the authors found an accelerated bone fracture healing in paraplegic rats, which was attributed to a mostly intramembranous ossification. Remarkably, despite healing faster, these calluses are less dense, more porous, and show lower mechanical integrity.

    Article  Google Scholar 

  23. Morse L, Teng YD, Pham L, Newton K, Yu D, Liao WL, et al. Spinal cord injury causes rapid osteoclastic resorption and growth plate abnormalities in growing rats (SCI-induced bone loss in growing rats). Osteoporos Int. 2008;19:645–52. https://doi.org/10.1007/s00198-007-0494-x.

    Article  CAS  Google Scholar 

  24. Jiang SD, Jiang LS, Dai LY. Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos Int. 2007;18:339–49. https://doi.org/10.1007/s00198-006-0229-4.

    Article  CAS  Google Scholar 

  25. Zhao W, Li X, Peng Y, Qin Y, Pan J, Li J, et al. Sclerostin antibody reverses the severe sublesional bone loss in rats after chronic spinal cord injury. Calcif Tissue Int. 2018;103:443–54. https://doi.org/10.1007/s00223-018-0439-8.

    Article  CAS  Google Scholar 

  26. Frotzler A, Cheikh-Sarraf B, Pourtehrani M, Krebs J, Lippuner K. Long-bone fractures in persons with spinal cord injury. Spinal Cord. 2015;53:701–4. https://doi.org/10.1038/sc.2015.74.

    Article  CAS  Google Scholar 

  27. Veeriah V, Paone R, Chatterjee S, Teti A, Capulli M. Osteoblasts regulate angiogenesis in response to mechanical unloading. Calcif Tissue Int. 2019;104:344–54. https://doi.org/10.1007/s00223-018-0496-z.

    Article  CAS  Google Scholar 

  28. Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep. 2017;7:2811. https://doi.org/10.1038/s41598-017-02557-8.

    Article  CAS  PubMed Central  Google Scholar 

  29. Gatti V, Ghobryal B, Gelbs MJ, Gerber MB, Doty SB, Cardoso L, et al. Botox-induced muscle paralysis alters intracortical porosity and osteocyte lacunar density in skeletally mature rats. J Orthop Res. 2019;37:1153–63. https://doi.org/10.1002/jor.24276.

    Article  CAS  Google Scholar 

  30. Iori G, Schneider J, Reisinger A, Heyer F, Peralta L, Wyers C, et al. Large cortical bone pores in the tibia are associated with proximal femur strength. PLoS One. 2019;14:e0215405. https://doi.org/10.1371/journal.pone.0215405.

    Article  CAS  PubMed Central  Google Scholar 

  31. Szollar M, Martin EME, Sartoris DJ, Parthemore JG, Deftos LJ. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil. 1998;77:28–35. https://doi.org/10.1097/00002060-199801000-00005.

    Article  CAS  Google Scholar 

  32. Federation ID. IDF Diabetes Atlas Eighth edition 2017. International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium. 2017. http://www.diabetesatlas.org. 2017. https://doi.org/10.1016/S0140-6736(16)31679-8. Accessed on Nov. 27th, 2019.

    Article  Google Scholar 

  33. Kurra S, Fink DA, Siris ES. Osteoporosis-associated fracture and diabetes. Endocrinol Metab Clin N Am. 2014;43:233–43. https://doi.org/10.1016/j.ecl.2013.09.004.

    Article  Google Scholar 

  34. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes - a meta-analysis. Osteoporos Int. 2007;18:427–44. https://doi.org/10.1007/s00198-006-0253-4.

    Article  CAS  Google Scholar 

  35. Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med. 2015;32:1134–42. https://doi.org/10.1111/dme.12734.

    Article  CAS  PubMed Central  Google Scholar 

  36. • Ferrari SL, Abrahamsen B, Napoli N, Akesson K, Chandran M, Eastell R, et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos Int. 2018;29:2585–96. https://doi.org/10.1007/s00198-018-4650-2The authors demonstrated that high levels of AGEs are associated with increased fracture risk in diabetic individuals likely impairing bone mechanical properties.

    Article  CAS  PubMed Central  Google Scholar 

  37. Reyes-García R, Rozas-Moreno P, López-Gallardo G, García-Martín A, Varsavsky M, Avilés-Perez MD, et al. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol. 2013;50:47–52. https://doi.org/10.1007/s00592-011-0347-0.

    Article  CAS  Google Scholar 

  38. Ardawi MSM, Akhbar DH, AlShaikh A, Ahmed MM, Qari MH, Rouzi AA, et al. Increased serum sclerostin and decreased serum IGF-1 are associated with vertebral fractures among postmenopausal women with type-2 diabetes. Bone. 2013;56:355–62. https://doi.org/10.1016/j.bone.2013.06.029.

    Article  CAS  Google Scholar 

  39. Kemink SAG, Hermus ARMM, Swinkels LMJW, Lutterman JA, Smals AGH. Osteopenia in insulin-dependent diabetes mellitus: prevalence and aspects of pathophysiology. J Endocrinol Investig. 2000;23:295–303. https://doi.org/10.1007/BF03343726.

    Article  CAS  Google Scholar 

  40. Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:1013–9. https://doi.org/10.1210/jc.2007-1270.

    Article  CAS  Google Scholar 

  41. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR, et al. Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab. 2009;94:2380–6. https://doi.org/10.1210/jc.2008-2498.

    Article  CAS  PubMed Central  Google Scholar 

  42. Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:3240–50. https://doi.org/10.1210/jc.2012-1546.

    Article  CAS  PubMed Central  Google Scholar 

  43. Gennari L, Merlotti D, Valenti R, Ceccarelli E, Ruvio M, Pietrini MG, et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2012;97:1737–44. https://doi.org/10.1210/jc.2011-2958.

    Article  CAS  Google Scholar 

  44. Nyman JS, Even JL, Jo CH, Herbert EG, Murry MR, Cockrell GE, et al. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone. 2011;48:733–40. https://doi.org/10.1016/j.bone.2010.12.016.

    Article  Google Scholar 

  45. Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, et al. Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue–derived mesenchymal stem cells in vitro. J Bone Miner Res. 2016;31:2173–92. https://doi.org/10.1002/jbmr.2897.

    Article  CAS  Google Scholar 

  46. Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, et al. High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone. 2008;42:1122–30. https://doi.org/10.1016/j.bone.2008.02.006.

    Article  CAS  PubMed Central  Google Scholar 

  47. Kawashima Y, Fritton JC, Yakar S, Epstein S, Schaffler MB, Jepsen KJ, et al. Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis. Bone. 2009;44:648–55. https://doi.org/10.1016/j.bone.2008.

    Article  Google Scholar 

  48. Kiechl S, Wittmann J, Giaccari A, Knoflach M, Willeit P, Bozec A, et al. Blockade of receptor activator of nuclear factor-κB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus. Nat Med. 2013;19:358–63. https://doi.org/10.1038/nm.3084.

    Article  CAS  Google Scholar 

  49. Kanazawa I, Yamaguchi T, Tada Y, Yamauchi M, Yano S, Sugimoto T. Serum osteocalcin level is positively associated with insulin sensitivity and secretion in patients with type 2 diabetes. Bone. 2011;48:720–5. https://doi.org/10.1016/j.bone.2010.12.020.

    Article  CAS  Google Scholar 

  50. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69. https://doi.org/10.1016/j.cell.2007.05.047.

    Article  CAS  PubMed Central  Google Scholar 

  51. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214. https://doi.org/10.1007/s00198-009-1066-z.

    Article  CAS  Google Scholar 

  52. Burr D. Microdamage and bone strength. Osteoporos Int. 2003;Suppl 5:S67–72. https://doi.org/10.1007/s00198-003-1476-2.

    Article  Google Scholar 

  53. Heilmeier U, Cheng K, Pasco C, Parrish R, Nirody J, Patsch JM, et al. Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos Int. 2016;27:2791–802. https://doi.org/10.1007/s00198-016-3614-7.

    Article  CAS  PubMed Central  Google Scholar 

  54. Burr DB. Cortical bone: a target for fracture prevention? Lancet. 2010;375:1672–3. https://doi.org/10.1016/S0140-6736(10)60444-8.

    Article  Google Scholar 

  55. Dong XN, Qin A, Xu J, Wang X. In situ accumulation of advanced glycation endproducts (AGEs) in bone matrix and its correlation with osteoclastic bone resorption. Bone. 2011;49:174–83. https://doi.org/10.1016/j.bone.2011.04.009.

    Article  CAS  PubMed Central  Google Scholar 

  56. Curtis EM, van der Velde R, Moon RJ, van den Bergh JPW, Geusens P, de Vries F, et al. Epidemiology of fractures in the United Kingdom 1988-2012: Variation with age, sex, geography, ethnicity and socioeconomic status. Bone. 2016;87:19–26. https://doi.org/10.1016/j.bone.2016.03.006.

    Article  PubMed Central  Google Scholar 

  57. Ko KI, Coimbra LS, Tian C, Alblowi J, Kayal RA, Einhorn TA, et al. Diabetes reduces mesenchymal stem cells in fracture healing through a TNF alpha-mediated mechanism. Diabetologia. 2015;58:633–42. https://doi.org/10.1007/s00125-014-3470-y.

    Article  CAS  PubMed Central  Google Scholar 

  58. Jillian L, Melissa AK, David LS. Fracture healing. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego: Elsevier; 2013.

    Google Scholar 

  59. Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int. 2005;Suppl 2:S36–43. https://doi.org/10.1007/s00198-004-1728-9.

    Article  Google Scholar 

  60. Thormann U, El Khawassna T, Ray S, Duerselen L, Kampschulte M, Lips K, et al. Differences of bone healing in metaphyseal defect fractures between osteoporotic and physiological bone in rats. Injury. 2014;45:487–93. https://doi.org/10.1016/j.injury.2013.10.033.

    Article  Google Scholar 

  61. Konstantinidis L, Helwig P, Hirschmüller A, Langenmair E, Südkamp NP, Augat P. When is the stability of a fracture fixation limited by osteoporotic bone? Injury. 2016;Suppl2:S27–32. https://doi.org/10.1016/S0020-1383(16)47005-1.

    Article  Google Scholar 

  62. Gardner MJ, Collinge C. Management principles of osteoporotic fractures. Injury. 2016;Suppl 2:S33–5. https://doi.org/10.1016/S0020-1383(16)47006-3.

    Article  Google Scholar 

  63. Konstantinidis L, Papaioannou C, Hirschmüller A, Pavlidis T, Schroeter S, Südkamp NP, et al. Intramedullary nailing of trochanteric fractures: central or caudal positioning of the load carrier? A biomechanical comparative study on cadaver bones. Injury. 2013;44:784–90. https://doi.org/10.1016/j.injury.2012.12.023.

    Article  CAS  Google Scholar 

  64. Strømsøe K. Fracture fixation problems in osteoporosis. Injury. 2004;35:107–13. https://doi.org/10.1016/j.injury.2003.08.019.

    Article  Google Scholar 

  65. Schulte LM, Scully RD, Kappa JE. Management of Lower Extremity Long-bone Fractures in Spinal Cord Injury Patients. J Am Acad Orthop Surg. 2017;25:e204–13. https://doi.org/10.5435/JAAOS-D-15-00686.

    Article  Google Scholar 

  66. Gifre L, Vidal J, Carrasco JL, Muxi A, Portell E, Monegal A, et al. Risk factors for the development of osteoporosis after spinal cord injury. A 12-month follow-up study. Osteoporos Int. 2015;26:2273–80. https://doi.org/10.1007/s00198-015-3150-x.

    Article  CAS  Google Scholar 

  67. Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, et al. Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int. 2009;20:385–92. https://doi.org/10.1007/s00198-008-0671-6.

    Article  CAS  Google Scholar 

  68. • Grassner L, Klein B, Maier D, Bühren V, Vogel M. Lower extremity fractures in patients with spinal cord injury characteristics, outcome and risk factors for non-unions. J Spinal Cord Med. 2018;41:676–83. https://doi.org/10.1080/10790268.2017The authors identified 132 patients who fulfilled the inclusion criteria to determine the outcomes of SCI patients with lower extremity fractures. Supracondylar femur fractures were the most prevalent and showed a non-union rate of 15.9%. The authors concluded that even though modern techniques allow surgical interventions in bones with reduced mineral density, non-unions remain a common complication in patients with SCI.

    Article  Google Scholar 

  69. Wang L, Liu L, Pan Z, Zeng Y. Serum leptin, bone mineral density and the healing of long bone fractures in men with spinal cord injury. Bosn J Basic Med Sci. 2015;15:69–74. https://doi.org/10.17305/bjbms.2015.693.

    Article  CAS  PubMed Central  Google Scholar 

  70. Wang L, Yao X, Xiao L, Tang X, Ding H, Zhang H, et al. The effects of spinal cord injury on bone healing in patients with femoral fractures. J Spinal Cord Med. 2014;37:414–9. https://doi.org/10.1179/2045772313Y.0000000155.

    Article  PubMed Central  Google Scholar 

  71. Khallaf FG, Kehinde EO, Mostafa A. Growth factors and cytokines in patients with long bone fractures and associated spinal cord injury. J Orthop. 2016;13:69–75. https://doi.org/10.1016/j.jor.2016.02.001.

    Article  PubMed Central  Google Scholar 

  72. Ragnarsson KT, Sell GH. Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil. 1981;62:418–23.

    CAS  Google Scholar 

  73. Ding WG, Jiang SD, Zhang YH, Jiang LS, Dai LY. Bone loss and impaired fracture healing in spinal cord injured mice. Osteoporos Int. 2011;22:507–15. https://doi.org/10.1007/s00198-010-1256-8.

    Article  Google Scholar 

  74. Ding WG, Liu JB, Wei ZX. Spinal cord injury causes more damage to fracture healing of later phase than ovariectomy in young mice. Connective Tissue Res. 2012;53:142–8. https://doi.org/10.3109/03008207.2011.614365.

    Article  CAS  Google Scholar 

  75. • Sakitani N, Iwasawa H, Nomura M, Miura Y, Kuroki H, Ozawa J, et al. Mechanical stress by spasticity accelerates fracture healing after spinal cord injury. Calcif tissue Int. 2017;101:384–95. https://doi.org/10.1007/s00223-017-0293-0The authors suggested that the accelerated fracture healing in SCI rats was due to the mostly intramembranous ossification in these animals.

    Article  CAS  Google Scholar 

  76. Wang L, Tang X, Zhang H, Yuan J, Ding H, Wei Y. Elevated leptin expression in rat model of traumatic spinal cord injury and femoral fracture. J Spinal Cord Med. 2011;34:501–9. https://doi.org/10.1179/2045772311Y.0000000034.

    Article  PubMed Central  Google Scholar 

  77. Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep. 2015;13(5):327–35. https://doi.org/10.1007/s11914-015-0286-8.

    Article  PubMed Central  Google Scholar 

  78. Alblowi J, Kayal RA, Siqueira M, McKenzie E, Krothapalli N, McLean J, et al. High levels of tumor necrosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol. 2009;175:1574–85. https://doi.org/10.2353/ajpath.2009.090148.

    Article  CAS  PubMed Central  Google Scholar 

  79. Roy B. Biomolecular basis of the role of diabetes mellitus in osteoporosis and bone fractures. World J Diabetes. 2013;4:101–13. https://doi.org/10.4239/wjd.v4.i4.101.

    Article  PubMed Central  Google Scholar 

  80. Fujii H, Hamada Y, Fukagawa M. Bone formation in spontaneously diabetic Torii-newly established model of non-obese type 2 diabetes rats. Bone. 2008;42:372–9. https://doi.org/10.1016/j.bone.2007.10.007.

    Article  CAS  Google Scholar 

  81. •• Lim JC, Ko KI, Mattos M, Fang M, Zhang C, Feinberg D, et al. TNFα contributes to diabetes impaired angiogenesis in fracture healing. Bone. 2017;99:26–38. https://doi.org/10.1016/j.bone.2017.02.014The authors aimed to elucidate the mechanisms leading to a deficit in angiogenesis due to diabetes during fracture healing in normoglycemic and streptozotocin-induced diabetic mice. The authors detected a decrease in angiogenesis and VEGFA expression by chondrocytes in diabetic mice, which was linked to increased TNFα that was, in turn, enhanced by high glucose and AGEs and mediated by the transcription factor FOXO1.

    Article  CAS  PubMed Central  Google Scholar 

  82. Tevlin R, Ardle AM, Senarath-Yapa K, Rodrigues M, Maan ZN, Li S, et al. Impaired angiogenesis: a critical contributor to problematic fracture healing in diabetes. J Am Coll Surg. 2014;219:S83. https://doi.org/10.1016/j.jamcollsurg.2014.07.196.

    Article  Google Scholar 

  83. Brown ML, Yukata K, Farnsworth CW, Chen DG, Awad H, Hilton MJ, et al. Delayed fracture healing and increased callus adiposity in a C57BL/6J Murine model of obesity-associated type 2 diabetes mellitus. PLoS One. 2014;9:e99656. https://doi.org/10.1371/journal.pone.0099656.

    Article  CAS  PubMed Central  Google Scholar 

  84. Bahney CS, Hu DP, Miclau T, Marcucio RS. The multifaceted role of the vasculature in endochondral fracture repair. Front Endocrinol. 2015;6:4. https://doi.org/10.3389/fendo.2015.00004.

    Article  Google Scholar 

  85. Alblowi J, Tian C, Siqueira MF, Kayal RA, McKenzie E, Behl Y, et al. Chemokine expression is upregulated in chondrocytes in diabetic fracture healing. Bone. 2013;53(1):294–300. https://doi.org/10.1016/j.bone.2012.12.006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Zamarioli.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Orthopedic Management of Fractures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamarioli, A., de Andrade Staut, C. & Volpon, J.B. Review of Secondary Causes of Osteoporotic Fractures Due to Diabetes and Spinal Cord Injury. Curr Osteoporos Rep 18, 148–156 (2020). https://doi.org/10.1007/s11914-020-00571-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00571-w

Keywords

Navigation