Skip to main content
Log in

Genetics of Eating Disorders

  • Eating Disorders (AS Kaplan, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Disordered eating behavior is the core symptom of the complex disorders anorexia nervosa and bulimia nervosa. Twin and family studies derive high heritability estimates. Hence, substantial genetic influences on the etiology can be assumed for both. Initially, candidate gene studies pertaining to the monoaminergic neurotransmitter systems and to body weight regulation comprised the core of the genetic analyses. Unfortunately, confirmed, solid findings substantiated in meta-analyses are rare, so that eventually none of these associations is unequivocal. Thus, systematic, genome-wide approaches emerged to identify genes with no a priori evidence for their involvement in eating disorders. Genome-wide association studies have hinted to formerly unknown genetic regions. However, significant genome-wide findings have not yet been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association (APA). Diagnostic and statistical manual of mental disorders. 5th ed. Washington: APA; 2013.

    Google Scholar 

  2. World Health Organization (WHO). ICD-10. International classification of mental and behavioural disorders. Clinical description and diagnostic guidelines. Geneva: WHO; 1998.

    Google Scholar 

  3. Hoek HW. Incidence, prevalence and mortality of anorexia nervosa and other eating disorders. Curr Opin Psychiatry. 2006;19:389–94.

    PubMed  Google Scholar 

  4. Hudson JI, Hiripi E, Pope Jr HG, et al. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry. 2007;61:348–58.

    PubMed  Google Scholar 

  5. Smink FR, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. 2012;14:406–14.

    PubMed  Google Scholar 

  6. Trace SE, Baker JH, Peñas-Lledó E, et al. The genetics of eating disorders. Annu Rev Clin Psychol. 2013;9:589–620.

    PubMed  Google Scholar 

  7. Javaras KN, Laird NM, Reichborn-Kjennerud T, et al. Familiality and heritability of binge eating disorder: results of a case–control family study and a twin study. Int J Eat Disord. 2008;41:174–9.

    PubMed  Google Scholar 

  8. Mitchell KS, Neale MC, Bulik CM, et al. Binge eating disorder: a symptom-level investigation of genetic and environmental influences on liability. Psychol Med. 2010;40:1899–906.

    PubMed  CAS  Google Scholar 

  9. Keski-Rahkonen A, Hoek HW, Susser ES, et al. Epidemiology and course of anorexia nervosa in the community. Am J Psychiatry. 2007;164:1259–65.

    PubMed  Google Scholar 

  10. Bulik CM, Sullivan PF, Wade TD, et al. Twin studies of eating disorders: a review. Int J Eat Disord. 2000;27:1–20.

    PubMed  CAS  Google Scholar 

  11. Klump KL, Holly A, Iaconom WG, et al. Physical similarity and twin resemblance for eating attitudes and behaviors: a test of the equal environments assumption. Behav Genet. 2000;30:51–8.

    PubMed  CAS  Google Scholar 

  12. Klump KL, Kaye WH, Strober M. The evolving genetic foundations of eating disorders. Psychiatr Clin North Am. 2001;24:215–25.

    PubMed  CAS  Google Scholar 

  13. Klump KL, Miller KB, Keel PK, et al. Genetic and environmental influences on anorexia nervosa syndromes in a population-based twin sample. Psychol Med. 2001;31:737–40.

    PubMed  CAS  Google Scholar 

  14. Klump KL, Wonderlich S, Lehoux P, et al. Does environment matter? A review of nonshared environment and eating disorders. Int J Eat Disord. 2002;31:118–35.

    PubMed  Google Scholar 

  15. • Fairburn CG, Harrison PJ. Eating disorders. Lancet. 2003;361:407–16. Comprehensive review on eating disorders.

    PubMed  Google Scholar 

  16. Kendler KS, Walters EE, Neale MC, et al. The structure of the genetic and environmental risk factors for six major psychiatric disorders in women. Phobia, generalized anxiety disorder, panic disorder, bulimia, major depression, and alcoholism. Arch Gen Psychiatry. 1995;52:374–83.

    PubMed  CAS  Google Scholar 

  17. Kipman A, Gorwood P, Mouren-Siméoni MC, et al. Genetic factors in anorexia nervosa. Eur Psychiatry. 1999;14:189–98.

    PubMed  CAS  Google Scholar 

  18. Bulik CM, Sullivan PF, Kendler KS. Heritability of binge-eating and broadly defined bulimia nervosa. Biol Psychiatry. 1998;44:1210–8.

    PubMed  CAS  Google Scholar 

  19. Wade TD, Bulik CM, Neale M, et al. Anorexia nervosa and major depression: shared genetic and environmental risk factors. Am J Psychiatry. 2000;157:469–71.

    PubMed  CAS  Google Scholar 

  20. Kortegaard LS, Hoerder K, Joergensen J, et al. A preliminary population-based twin study of self-reported eating disorder. Psychol Med. 2001;31:361–5.

    PubMed  CAS  Google Scholar 

  21. Walters EE, Kendler KS. Anorexia nervosa and anorexic-like syndromes in a population-based female twin sample. Am J Psychiatry. 1995;152:64–71.

    PubMed  CAS  Google Scholar 

  22. • Bulik CM, Thornton LM, Root TL, et al. Understanding the relation between anorexia nervosa and bulimia nervosa in a Swedish national twin sample. Biol Psychiatry. 2010;67:71–7. Heritability estimation and analysis of the genetic overlap between AN and BN in a large twin sample.

    PubMed  Google Scholar 

  23. Strober M, Freeman R, Lampert C, et al. Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry. 2001;157:393–401.

    Google Scholar 

  24. Hinney A, Remschmidt H, Hebebrand J. Candidate gene polymorphisms in eating disorders. Eur J Pharmacol. 2000;410:147–59.

    PubMed  CAS  Google Scholar 

  25. Hinney A, Scherag S, Hebebrand J. Genetic findings in anorexia and bulimia nervosa. Prog Mol Biol Transl Sci. 2010;94:241–70.

    PubMed  CAS  Google Scholar 

  26. Scherag S, Hebebrand J, Hinney A. Eating disorders: the current status of molecular genetic research. Eur Child Adolesc Psychiatry. 2010;19:211–26.

    PubMed  Google Scholar 

  27. Barry VC, Klawans HL. On the role of dopamine in the pathophysiology of anorexia nervosa. J Neural Transm. 1976;38:107–22.

    PubMed  CAS  Google Scholar 

  28. Golden NH, Shenker IR. Amenorrhea in anorexia nervosa. Neuroendocrine control of hypothalamic dysfunction. Int J Eat Disord. 1994;16:53–60.

    PubMed  CAS  Google Scholar 

  29. • Kaye WH, Gwirtsman HE, George DT, et al. Altered serotonin activity in anorexia nervosa after long-term weight restoration. Does elevated cerebrospinal fluid 5-hydroxyindoleacetic acid level correlate with rigid and obsessive behavior? Arch Gen Psychiatry. 1991;48:556–62. First report implicating the relevance of the serotonergic system as a trait marker in AN.

    PubMed  CAS  Google Scholar 

  30. • Kaye WH, Greeno CG, Moss H, et al. Alterations in serotonin activity and psychiatric symptoms after recovery from bulimia nervosa. Arch Gen Psychiatry. 1998;55:927–35. First report implicating the relevance of the serotonergic system as a trait marker in BN.

    PubMed  CAS  Google Scholar 

  31. • Kaye WH, Frank GK, McConaha C. Altered dopamine activity after recovery from restricting-type anorexia nervosa. Neuropsychopharmacology. 1999;21:503–6. First report implicating the relevance of the dopaminergic system as a trait marker in AN.

    PubMed  CAS  Google Scholar 

  32. Kaye WH, Klump KL, Frank GK, et al. Anorexia and bulimia nervosa. Annu Rev Med. 2000;51:299–313.

    PubMed  CAS  Google Scholar 

  33. Kaye WH, Lilenfeld LR, Berrettini WH, et al. A search for susceptibility loci for anorexia nervosa: methods and sample description. Biol Psychiatry. 2000;47:794–803.

    PubMed  CAS  Google Scholar 

  34. Kaye WH, Bulik CM, Thornton L, et al. Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatry. 2004;161:2215–21.

    PubMed  Google Scholar 

  35. Kaye WH, Fudge JL, Paulus M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009;10:573–84.

    PubMed  CAS  Google Scholar 

  36. Keating C. Theoretical perspective on anorexia nervosa: the conflict of reward. Neurosci Biobehav Rev. 2010;34:73–9.

    PubMed  Google Scholar 

  37. Wagner A, Aizenstein H, Venkatraman VK, et al. Altered reward processing in women recovered from anorexia nervosa. Am J Psychiatry. 2007;164:1842–9.

    PubMed  Google Scholar 

  38. Wagner A, Aizenstein H, Venkatraman VK, et al. Altered striatal response to reward in bulimia nervosa after recovery. Int J Eat Disord. 2010;43:289–94.

    PubMed  Google Scholar 

  39. Vaz-Leal FJ, Rodríguez Santos L, García-Herráiz MA, et al. Bulimia nervosa with history of anorexia nervosa: Could the clinical subtype of anorexia have implications for clinical status and treatment response? Int J Eat Disord. 2011;44:212–9.

    PubMed  Google Scholar 

  40. Fairburn CG, Cooper Z, Doll HA, et al. Risk factors for anorexia nervosa: three integrated case–control comparisons. Arch Gen Psychiatry. 1999;56:468–76.

    PubMed  CAS  Google Scholar 

  41. • Hebebrand J, Remschmidt H. Anorexia nervosa viewed as an extreme weight condition: genetic implications. Hum Genet. 1995;95:1–11. First report on the importance of body weight in an eating disorder.

    PubMed  CAS  Google Scholar 

  42. Rosenkranz K, Hinney A, Ziegler A, et al. Systematic mutation screening of the estrogen receptor beta gene in probands of different weight extremes: identification of several genetic variants. J Clin Endocrinol Metab. 1998;83:4524–7.

    PubMed  CAS  Google Scholar 

  43. Versini A, Ramoz N, Le Strat Y, et al. Estrogen receptor 1 gene (ESR1) is associated with restrictive anorexia nervosa. Neuropsychopharmacology. 2010;35:1818–25.

    PubMed  CAS  Google Scholar 

  44. Blundell JE, Lawton CL, Halford JC. Serotonin, eating behavior, and fat intake. Obes Res. 1995;3:471S–6S.

    PubMed  CAS  Google Scholar 

  45. Halford JC, Blundell JE. Separate systems for serotonin and leptin in appetite control. Ann Med. 2000;32:222–32.

    PubMed  CAS  Google Scholar 

  46. Wurtman RJ, Wurtman JJ. Brain Serotonin, Carbohydrate-craving, obesity and depression. Adv Exp Med Biol. 1996;398:35–41.

    PubMed  CAS  Google Scholar 

  47. Jimerson DC, Lesem MD, Kaye WH, et al. Low serotonin and dopamine metabolite concentrations in cerebrospinal fluid from bulimic patients with frequent binge episodes. Arch Gen Psychiatry. 1992;49:132–8.

    PubMed  CAS  Google Scholar 

  48. Brewerton TD, Jimerson DC. Studies of serotonin function in anorexia nervosa. Psychiatry Res. 1996;62:31–42.

    PubMed  CAS  Google Scholar 

  49. Gorwood P, Adès J, Bellodi L, et al. The 5-HT(2A) -1438G/A polymorphism in anorexia nervosa: a combined analysis of 316 trios from six European centres. Mol Psychiatry. 2002;7:90–4.

    PubMed  CAS  Google Scholar 

  50. Gorwood P. Eating disorders, serotonin transporter polymorphisms and potential treatment response. Am J Pharmacogenomics. 2004;4:9–17.

    PubMed  CAS  Google Scholar 

  51. Calati R, De Ronchi D, Bellini M, et al. The 5-HTTLPR polymorphism and eating disorders: a meta-analysis. Int J Eat Disord. 2011;44:191–9.

    PubMed  Google Scholar 

  52. Castellini G, Ricca V, Lelli L, et al. Association between serotonin transporter gene polymorphism and eating disorders outcome: a 6-year follow-up study. Am J Med Genet Neuropsychiatr Genet. 2012;159B:491–500.

    Google Scholar 

  53. Slof-Op ’t Landt MC, Meulenbelt I, Bartels M, et al. Association study in eating disorders: TPH2 associates with anorexia nervosa and self-induced vomiting. Genes Brain Behav. 2011;10:236–43.

    PubMed  Google Scholar 

  54. Slof-Op’t Landt MC, Bartels M, Middeldorp CM, et al. Genetic variation at the TPH2 gene influences impulsivity in addition to eating disorders. Behav Genet. 2013;43:24–33.

    PubMed  Google Scholar 

  55. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11:241–7.

    PubMed  CAS  Google Scholar 

  56. Bergen AW, Yeager M, Welch RA, et al. Association of multiple DRD2 polymorphisms with anorexia nervosa. Neuropsychopharmacology. 2005;30:1703–10.

    PubMed  CAS  Google Scholar 

  57. Davis C, Levitan RD, Yilmaz Z, et al. Binge eating disorder and the dopamine D2 receptor: genotypes and sub-phenotypes. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38:328–33.

    PubMed  CAS  Google Scholar 

  58. Bachner-Melman R, Lerer E, et al. Anorexia nervosa, perfectionism, and dopamine D4 receptor (DRD4). Am J Med Genet B Neuropsychiatr Genet. 2007;144B:748–56.

    PubMed  CAS  Google Scholar 

  59. Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382:250–2.

    PubMed  CAS  Google Scholar 

  60. • Hebebrand J, van der Heyden J, Devos R, et al. Plasma concentrations of obese protein in anorexia nervosa. Lancet. 1995;346:1624–5. First description of the extremely low leptin levels in patients with AN.

    PubMed  CAS  Google Scholar 

  61. Hebebrand J, Müller TD, Holtkamp K, et al. The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry. 2007;12:23–35.

    PubMed  CAS  Google Scholar 

  62. Hebebrand J, Blum WF, Barth N, et al. Leptin levels in patients with anorexia nervosa are reduced in the acute stage and elevated upon short-term weight restoration. Mol Psychiatry. 1997;2:330–4.

    PubMed  CAS  Google Scholar 

  63. Grinspoon S, Gulick T, Askari H, et al. Serum leptin levels in women with anorexia nervosa. J Clin Endocrinol Metab. 1996;81:3861–3.

    PubMed  CAS  Google Scholar 

  64. Haas V, Onur S, Paul T, et al. Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery. Am J Clin Nutr. 2005;81:889–96.

    PubMed  CAS  Google Scholar 

  65. Holtkamp K, Mika C, Grzella I, et al. Reproductive function during weight gain in anorexia nervosa. Leptin represents a metabolic gate to gonadotropin secretion. J Neural Transm. 2003;110:427–35.

    PubMed  CAS  Google Scholar 

  66. Frey J, Hebebrand J, Müller B, et al. Reduced body fat in long-term followed-up female patients with anorexia nervosa. J Psychiatr Res. 2000;34:83–8.

    PubMed  CAS  Google Scholar 

  67. Haluzík M, Papezová M, Nedvídková J, et al. Serum leptin levels in patients with anorexia nervosa before and after partial refeeding, relationships to serum lipids and biochemical nutritional parameters. Physiol Res. 1999;48:197–202.

    PubMed  Google Scholar 

  68. Gendall KA, Kaye WH, Altemus M, et al. Leptin, neuropeptide Y, and peptide YY in long-term recovered eating disorder patients. Biol Psychiatry. 1999;46:292–9.

    PubMed  CAS  Google Scholar 

  69. Hinney A, Bornscheuer A, Depenbusch M, et al. No evidence for involvement of the leptin gene in anorexia nervosa, bulimia nervosa, underweight or early onset extreme obesity: identification of two novel mutations in the coding sequence and a novel polymorphism in the leptin gene linked upstream region. Mol Psychiatry. 1998;3:539–43.

    PubMed  CAS  Google Scholar 

  70. Quinton ND, Meechan DW, Brown K, et al. Single nucleotide polymorphisms in the leptin receptor gene: studies in anorexia nervosa. Psychiatr Genet. 2004;14:191–4.

    PubMed  CAS  Google Scholar 

  71. • Brandys MK, van Elburg AA, Loos RJ, et al. Are recently identified genetic variants regulating BMI in the general population associated with anorexia nervosa? Am J Med Genet B Neuropsychiatr Genet. 2010;153B:695–9. Analyses of GWAS-derived obesity genes in AN.

    PubMed  CAS  Google Scholar 

  72. Farooqi IS, Yeo GS, Keogh JM, et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J Clin Invest. 2000;106:271–9.

    PubMed  CAS  Google Scholar 

  73. Hinney A, Schmidt A, Nottebom K, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J Clin Endocrinol Metab. 1999;84:1483–6.

    PubMed  CAS  Google Scholar 

  74. Hinney A, Hohmann S, Geller F, et al. Melanocortin-4 receptor gene: case–control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J Clin Endocrinol Metab. 2003;88:4258–67.

    PubMed  CAS  Google Scholar 

  75. Hinney A, Bettecken T, Tarnow P, et al. Prevalence, spectrum, and functional characterization of melanocortin-4 receptor gene mutations in a representative population-based sample and obese adults from Germany. J Clin Endocrinol Metab. 2006;91:1761–9.

    PubMed  CAS  Google Scholar 

  76. Vaisse C, Clement K, Guy-Grand B, et al. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet. 1998;20:113–4.

    PubMed  CAS  Google Scholar 

  77. Vaisse C, Clement K, Durand E, et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000;106:253–62.

    PubMed  CAS  Google Scholar 

  78. Yeo GS, Farooqi IS, Aminian S, et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998;20:111–2.

    PubMed  CAS  Google Scholar 

  79. • Hebebrand J, Fichter M, Gerber G, et al. Genetic predisposition to obesity in bulimia nervosa: a mutation screen of the melanocortin-4 receptor gene. Mol Psychiatry. 2002;7:647–51. Detection of an “obesity mutation” in a patient with BN.

    PubMed  CAS  Google Scholar 

  80. Branson R, Potoczna N, Kral JG, et al. Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N Engl J Med. 2003;348:1096–103.

    PubMed  CAS  Google Scholar 

  81. Potoczna N, Branson R, Kral JG, et al. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J Gastrointest Surg. 2004;8:971–81.

    PubMed  Google Scholar 

  82. Geller F, Reichwald K, Dempfle A, et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am J Hum Genet. 2004;74:572–81.

    PubMed  CAS  Google Scholar 

  83. Wang D, Ma J, Zhang S, et al. Association of the MC4R V103I polymorphism with obesity: a Chinese Case–control study and meta-analysis in 55,195 individuals. Obesity (Silver Spring). 2010;18:573–9.

    Google Scholar 

  84. Herpertz S, Siffert W, Hebebrand J. Binge eating as a phenotype of melanocortin 4 receptor gene mutations. N Engl J Med. 2003;349:606–9.

    PubMed  Google Scholar 

  85. Hebebrand J, Geller F, Dempfle A, et al. Binge-eating episodes are not characteristic of carriers of melanocortin-4 receptor gene mutations. Mol Psychiatry. 2004;9:796–800.

    PubMed  CAS  Google Scholar 

  86. Valette M, Bellisle F, Carette C, et al. Eating behaviour in obese patients with melanocortin-4 receptor mutations: a literature review. Int J Obes (Lond). 2013;37:1027–35.

    CAS  Google Scholar 

  87. Ribasés M, Gratacòs M, Fernández-Aranda F, et al. Association of BDNF with restricting anorexia nervosa and minimum body mass index: a family-based association study of eight European populations. Eur J Hum Genet. 2005;13:428–34.

    PubMed  Google Scholar 

  88. Dmitrzak-Weglarz M, Skibinska M, Slopien A, et al. BDNF Met66 allele is associated with anorexia nervosa in the Polish population. Psychiatr Genet. 2007;17:245–6.

    PubMed  Google Scholar 

  89. Gelegen C, van den Heuvel J, Collier DA, et al. Dopaminergic and brain-derived neurotrophic factor signalling in inbred mice exposed to a restricted feeding schedule. Genes Brain Behav. 2008;7:552–9.

    PubMed  CAS  Google Scholar 

  90. Ribasés M, Gratacòs M, Fernández-Aranda F, et al. Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum Mol Genet. 2004;13:1205–12.

    PubMed  Google Scholar 

  91. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    PubMed  CAS  Google Scholar 

  92. • Hinney A, Nguyen TT, Scherag A, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2:e1361. First GWAS for extreme early-onset obesity.

    PubMed  Google Scholar 

  93. Willer CJ, Speliotes EK, Loos RJ, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41:25–34.

    PubMed  CAS  Google Scholar 

  94. Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42:937–48.

    PubMed  CAS  Google Scholar 

  95. Jonassaint CR, Szatkiewicz JP, Bulik CM, et al. Absence of association between specific common variants of the obesity-related FTO gene and psychological and behavioral eating disorder phenotypes. Am J Med Genet B Neuropsychiatr Genet. 2011;156B:454–61.

    PubMed  Google Scholar 

  96. Müller TD, Greene BH, Bellodi L, et al. Fat mass and obesity-associated gene (FTO) in eating disorders: evidence for association of the rs9939609 obesity risk allele with bulimia nervosa and anorexia nervosa. Obes Facts. 2012;5:408–19.

    PubMed  Google Scholar 

  97. Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.

    PubMed  CAS  Google Scholar 

  98. Hebebrand J, Scherag A, Schimmelmann BG, et al. Child and adolescent psychiatric genetics. Eur Child Adolesc Psychiatry. 2010;19:259–79.

    PubMed  Google Scholar 

  99. •• Cross-Disorder Group of the Psychiatric Genomics Consortium, Smoller JW, Craddock N, Kendler K, Lee PH, Neale BM, et al. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9. Large-scale cross-disorder analysis of GWAS data.

    CAS  Google Scholar 

  100. •• Wang K, Zhang H, Bloss CS, et al. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol Psychiatry. 2011;16:949–59. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa.

    PubMed  CAS  Google Scholar 

  101. •• Boraska V, Bulik CM, Collier DA, Sullivan PF, Zeggini E, Genetic Consortium for Anorexia Nervosa, Wellcome Trust Case Control Consortium 3. WTCCC3 and GCAN: A genomewide association scan of Anorexia nervosa. Available at: http://www.ashg.org/2012meeting/abstracts/fulltext/f120120381.htm. Accessed 5 Nov 2013. Largest GWAS for AN to date.

  102. •• Boraska V, Davis OS, Cherkas LF, et al. Genome-wide association analysis of eating disorder-related symptoms, behaviors, and personality traits. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:803–11. Large population-based GWAS for eating disorder-related traits.

    PubMed  Google Scholar 

  103. Wade TD, Gordon S, Medland S, et al. Genetic variants associated with disordered eating. Int J Eat Disord. 2013;46:594–608.

    PubMed  Google Scholar 

  104. Wermter AK, Laucht M, Schimmelmann BG, et al. From nature versus nurture, via nature and nurture, to gene x environment interaction in mental disorders. Eur Child Adolesc Psychiatry. 2010;19:199–210.

    PubMed  Google Scholar 

  105. Mazzeo SE, Bulik CM. Environmental and genetic risk factors for eating disorders: what the clinician needs to know. Child Adolesc Psychiatr Clin N Am. 2009;18:67–82.

    PubMed  Google Scholar 

  106. Karwautz AF, Wagner G, Waldherr K, et al. Gene-environment interaction in anorexia nervosa: relevance of non-shared environment and the serotonin transporter gene. Mol Psychiatry. 2011;16:590–2.

    PubMed  CAS  Google Scholar 

  107. Dempfle A, Scherag A, Hein R, et al. Gene-environment interactions for complex traits: definitions, methodological requirements and challenges. Eur J Hum Genet. 2008;16:1164–72.

    PubMed  CAS  Google Scholar 

  108. • Nakabayashi K, Komaki G, Tajima A, et al. Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers. J Hum Genet. 2009;54:531–7. First GWAS for AN based on microsatellite markers.

    PubMed  CAS  Google Scholar 

  109. Hebebrand J, Bulik C. Critical appraisal of the provisional DSM-5 criteria for anorexia nervosa and an alternative proposal. Int J Eat Disord. 2011;44:665–78.

    PubMed  Google Scholar 

  110. Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465:721–7.

    PubMed  CAS  Google Scholar 

  111. Relton CL, Davey Smith G. Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med. 2010;7:e1000356.

    PubMed  Google Scholar 

  112. Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res. 2009;88:400–8.

    PubMed  CAS  Google Scholar 

  113. Berdasco M, Esteller M. Genetic syndromes caused by mutations in epigenetic genes. Hum Genet. 2013;132:359–83.

    PubMed  CAS  Google Scholar 

  114. Kuehnen P, Grueters A, Krude H. Two puzzling cases of thyroid dysgenesis. Horm Res. 2009;71(Suppl1):93–7.

    PubMed  CAS  Google Scholar 

  115. Kuehnen P, Krude H. Alu elements and human common diseases like obesity. Mob Genet Elem. 2012;2:197–201.

    Google Scholar 

  116. Kuehnen P, Mischke M, Wiegand S, et al. An Alu element-associated hypermethylation variant of the POMC gene is associated with childhood obesity. PLoS Genet. 2012;8:e1002543.

    PubMed  CAS  Google Scholar 

  117. Stöger R. The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? Bioessays. 2008;30:156–66.

    PubMed  Google Scholar 

  118. Barrès R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.

    PubMed  Google Scholar 

  119. Barrès R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15:405–11.

    PubMed  Google Scholar 

  120. Barres R, Kirchner H, Rasmussen M, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. Cell Rep. 2013;3:1020–7.

    PubMed  CAS  Google Scholar 

  121. Campbell IC, Mill J, Uher R, et al. Eating disorders, gene-environment interactions and epigenetics. Neurosci Biobehav Rev. 2011;35:784–93.

    PubMed  Google Scholar 

  122. Pjetri E, Dempster E, Collier DA, et al. Quantitative promoter DNA methylation analysis of four candidate genes in anorexia nervosa: a pilot study. J Psychiatr Res. 2013;47:280–2.

    PubMed  Google Scholar 

  123. Steiger H, Labonte B, Groleau P, et al. Methylation of the glucocorticoidreceptor gene promoter in bulimic women: associations with borderline personality disorder, suicidality, and exposure to childhood abuse. Int J Eat Disord. 2013;46:246–55.

    PubMed  Google Scholar 

  124. Frieling H, Gozner A, Römer KD, et al. Global DNA hypomethylation and DNA hypermethylation of the alpha synuclein promoter in females with anorexia nervosa. Mol Psychiatry. 2007;12:229–30.

    PubMed  CAS  Google Scholar 

  125. Frieling H, Bleich S, Otten J, et al. Epigenetic downregulation of atrial natriuretic peptide but not vasopressin mRNA expression in females with eating disorders is related to impulsivity. Neuropsychopharmacology. 2008;33:2605–9.

    PubMed  CAS  Google Scholar 

  126. Frieling H, Römer KD, Scholz S, et al. Epigenetic dysregulation of dopaminergic genes in eating disorders. Int J Eat Disord. 2010;43:577–83.

    PubMed  Google Scholar 

  127. Ehrlich S, Weiss D, Burghardt R, et al. Promoter specific DNA methylation and gene expression of POMC in acutely underweight and recovered patients with anorexia nervosa. J Psychiatr Res. 2010;44:827–33.

    PubMed  Google Scholar 

  128. • Psychiatric GWAS Consortium Coordinating Committee, Cichon S, Craddock N, et al. Genomewide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry. 2009;166:540–56. Large international effort to unravel the genetic mechanisms in psychiatric disorders.

    PubMed  Google Scholar 

  129. Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456:18–21.

    PubMed  CAS  Google Scholar 

  130. Easter MM. “Not all my fault”: genes, stigma, and personal responsibility for women with eating disorders. Soc Sci Med. 2012;75:1408–16.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Federal Ministry of Education and Research (NGFNPlus: 01GS0820 and EDNET: 01GV0905).

Compliance with Ethics Guidelines

Conflict of Interest

Anke Hinney and Anna-Lena Volckmar declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Hinney.

Additional information

This article is part of the Topical Collection on Eating Disorders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinney, A., Volckmar, AL. Genetics of Eating Disorders. Curr Psychiatry Rep 15, 423 (2013). https://doi.org/10.1007/s11920-013-0423-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-013-0423-y

Keywords

Navigation