Skip to main content
Log in

Enhancement of Functional Properties of Wami Tilapia (Oreochromis urolepis hornorum) Skin Gelatin at Different pH Values

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The effects of several agents in two different concentrations and pH values (5.0 and 8.0) on the functional properties of tilapia (Oreochromis urolepis hornorum) skin gelatin were evaluated and compared using a control tilapia skin gelatin and a commercial mammalian gelatin. The addition of the agents (sucrose 4 % and 8 % (w/v), glycerol 5 % and 10 % (v/v), NaCl 0.3 and 0.8 mol/L, MgCl2 0.3 and 0.8 mol/L, MgSO4 0.3 and 0.8 mol/L, KCl 0.3 and 0.8 mol/L, and transglutaminase 10 and 15 mg/mL) slightly increased the turbidity. There were different ratios of rheological properties depending on the agent, concentration, and pH. The addition of all agents increased the viscosity of the gelatin solution, mainly at pH 5.0. The addition of glycerol (10 % (v/v)) raised viscosity up to 7.45 cP. The setting time was prolonged by incorporating the agents. The gelatin samples with the addition of MgSO4 0.8 mol/L showed higher gel strength than the mammalian gelatin, exhibiting values of 298 and 295gf at pH 5.0 and 8.0, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aewsiri, T., Benjakul, S., Visessanguan, W., Encarnacion, A. B., Wierenga, P. A., & Gruppen, H. (2011). Enhancement of emulsifying properties of cuttlefish skin gelatin by modification with hydroxysuccinimide esters of fatty acids. Food and Bioprocess Technology. doi:10.1007/s11947-011-0553-3.

  • Alfaro, A. T., Fonseca, G. G., Costa, C. S., & Prentice, C. (2009). Effect of extraction parameters on the properties of gelatin from King weakfish (Macrodon ancylodon) bones. Food Science and Technology International, 15(6), 553–562.

    Article  CAS  Google Scholar 

  • AOAC. (2000). Official methods of the Association of Official Agricultural Chemist’s International. Gaithersburg: AOAC International.

    Google Scholar 

  • Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: treatments, environmental impacts, current and potential uses. International Journal of Food Science and Technology, 43(4), 726–745.

    Article  CAS  Google Scholar 

  • Arvanitoyannis, I. S., & Ladas, D. (2008). Meat waste treatment methods and potential uses. International Journal of Food Science and Technology, 43(3), 543–559.

    Article  CAS  Google Scholar 

  • Asghar, A., & Henrickson, R. L. (1982). Chemical, biochemical, functional, and nutritional characteristics of collagen food systems. In C. O. Chichester, E. M. Mrata, & B. S. Schweigert (Eds.), Advances in food research (pp. 232–272). London: Academic Press.

    Google Scholar 

  • Boran, G., Mulvaney, S. J., & Regenstein, J. M. (2010). Rheological properties of gelatin from silver carp skin compared to commercially available gelatins from different sources. Journal of Food Science, 75(8), E565–E571.

    Article  CAS  Google Scholar 

  • BSI. (1975). Methods for sampling and testing gelatin (physical and chemical methods). London: British Standards Institution.

    Google Scholar 

  • Bueno, C. M., Alvim, I. D., Koberstein, T. C. R. D., Portella, M. C., & Grosso, C. (2011). Production of tilapia skin gelatin and its use in the production of micro-particles containing salmon oil. Brazilian Journal of Food Technology, 14(1), 65–73.

    Article  CAS  Google Scholar 

  • Chiou, B., Avena-Bustillos, R. J., Shey, J., Yee, E., Bechtel, P. J., Imam, S. H., Glenn, G. M., & Orts, W. J. (2006). Rheological and mechanical properties of cross-linked fish gelatins. Polymer, 47(18), 6379–6386.

    Article  CAS  Google Scholar 

  • Cho, S. M., Gu, Y. S., & Kim, S. B. (2004). Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 19(2), 221–229.

    Article  Google Scholar 

  • Choi, S. S., & Regenstein, J. M. (2000). Physicochemical and sensory characteristics of fish gelatin. Journal of Food Science, 65(2), 194–199.

    Article  CAS  Google Scholar 

  • Cole, C. G. B. (2011). Gelatin food science. Available at: www.gelatin.co.za. Accessed 26 April 2011.

  • Cole, C. G. B., & Roberts, J. J. (1996). Changes in the molecular composition of gelatin due to the manufacturing process and animal age, as shown by electrophoresis. Journal of the Society of the Leather Technologists and Chemists, 80(5), 136–141.

    CAS  Google Scholar 

  • Duan, R., Zhang, J., Xing, F., Konno, K., & Xu, B. (2011). Study on the properties of gelatins from skin of carp (Cyprinus carpio) caught in winter and summer season. Food Hydrocolloids, 25, 368–373.

    Article  CAS  Google Scholar 

  • Elysée-Collen, B., & Lencki, R. W. (1996). Effect of ethanol, ammonium sulfate, and temperature on the phase behaviour of type B gelatin. Journal of Agriculture and Food Chemistry, 44(7), 1651–1657.

    Article  Google Scholar 

  • Fernández-Díaz, M. D., Montero, P., & Gómez-Guillén, M. C. (2001). Gel properties of collagens from skins of cod (Gadus morhua) and hake (Merluccius merluccius) and their modification by the coenhancers magnesium sulphate, glycerol and transglutaminase. Food Chemistry, 74(2), 161–167.

    Article  Google Scholar 

  • Fernández-Díaz, M. D., Montero, P., & Gómez-Guillén, M. C. (2003). Effect of freezing fish skins on molecular and rheological properties of extracted gelatin. Food Hydrocolloids, 17(3), 281–286.

    Article  Google Scholar 

  • Gildberg, A., Arnesen, J. A., & Carlehög, M. (2002). Utilisation of cod backbone by biochemical fractionation. Process Biochemistry, 38(4), 475–480.

    Article  CAS  Google Scholar 

  • Gilsenan, P. M., & Ross-Murphy, S. B. (2000). Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids, 14(3), 191–195.

    Article  CAS  Google Scholar 

  • Gómez-Guillén, M. C., Turnay, J., Fernández-Díaz, M. D., Ulmo, N., Lizarbe, M. A., & Montero, P. (2002). Structural and physical properties of gelatin extracted from different marine species: a comparative study. Food Hydrocolloids, 16(1), 25–34.

    Article  Google Scholar 

  • Gudmundsson, M. (2002). Rheological properties of fish gelatin. Journal of Food Science, 67(6), 2172–2176.

    Article  CAS  Google Scholar 

  • Gudmundsson, M., & Hafsteinsson, H. (1997). Gelatin from cod skins as affected by chemical treatments. Journal of Food Science, 62(1), 37–39.

    Article  CAS  Google Scholar 

  • Harrington, W. F., & von Hippel, P. H. (1962). The structure of collagen and gelatin. In C. B. Anfinsen Jr., M. L. Anson, K. Bailey, & J. T. Edsall (Eds.), Advances in protein chemistry (pp. 1–138). London: Elsevier.

    Google Scholar 

  • Haug, I. J., Draget, K. I., & Smidsrød, O. (2004). Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocolloids, 18(2), 203–213.

    Article  CAS  Google Scholar 

  • Jamilah, B., & Harvinder, K. G. (2002). Properties of gelatins from skins of fish—black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chemistry, 77, 81–84.

    Article  CAS  Google Scholar 

  • Johns, P., & Courts, A. (1977). Relationship between collagen and gelatin. In A. G. Ward & A. Courts (Eds.), The science and technology of gelatin (pp. 138–177). London: Academic Press.

    Google Scholar 

  • Jongjareonrak, A., Benjakul, S., Visessanguan, W., & Tanaka, M. (2006). Skin gelatin from bigeye snapper and brownstripe red snapper: chemical compositions and effect of microbial transglutaminase on gel properties. Food Hydrocolloids, 20, 1216–1222.

    Article  CAS  Google Scholar 

  • Jongjareonrak, A., Rawdkuen, S., Chaijan, M., Benjakul, S., Osako, K., & Tanaka, M. (2010). Chemical compositions and characterisation of skin gelatin from farmed giant catfish (Pangasianodon gigas). LWT- Food Science and Technology, 43, 161–165.

    Article  CAS  Google Scholar 

  • Kunz, W., Lo Nostro, P., & Ninham, B. W. (2004). The present state of affairs with Hofmeister effects. Current Opinion in Colloid and Interface Science, 9, 1–18.

    Article  CAS  Google Scholar 

  • Ledward, D. A. (1986). Gelation of gelatin. In J. R. Mitchell & D. A. Ledward (Eds.), Functional properties of food macromolecules (pp. 171–201). London: Elsevier.

    Google Scholar 

  • Leuenberger, B. H. (1991). Investigation of viscosity and gelation properties of different mammalian and fish gelatins. Food Hydrocolloids, 5(4), 353–361.

    Article  CAS  Google Scholar 

  • Mohtar, N. F., Perera, C., & Quek, S. (2010). Optimisation of gelatine extraction from hoki (Macruronus novaezelandiae) skins and measurement of gel strength and SDS-PAGE. Food Chemistry, 122, 307–313.

    Article  CAS  Google Scholar 

  • Montero, P., Fernández-Díaz, M. D., & Gómez-Guillén, M. C. (2002). Characterization of gelatin gels induced by high pressure. Food Hydrocolloids, 16(3), 197–205.

    Article  CAS  Google Scholar 

  • Naftalian, R. J., & Symons, M. C. R. (1974). The mechanism of sugar-dependent stabilization of gelatin gels. Biochimica et Biophysica Acta, 352(1), 173–176.

    Article  Google Scholar 

  • Nagl, S., Tichy, H., Mayer, W. E., Samonte, I. E., Mcandrew, B. J., & Klein, J. (2001). Classification and phylogenetic relationships of African tilapiine fishes inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 20(3), 361–374.

    Article  CAS  Google Scholar 

  • Norland, R. E. (1990). Fish gelatin. In M. N. Voight & J. K. Botta (Eds.), Advances in fisheries technology and biotechnology for increased profitability (pp. 325–333). Lancaster: Technomic Publishing Co.

    Google Scholar 

  • Piotrowska, B., Sztuka, K., Kolodziejska, I. L., & Dobrosielska, E. (2008). Influence of transglutaminase or 1-ethyl-3-(3- imethylaminopropyl) carbodiimide (EDC) on the properties of fish-skin gelatin films. Food Hydrocolloids, 22(7), 1362–1371.

    Article  CAS  Google Scholar 

  • Sai-Ut, S., Jongjareonrak, A., & Rawdkuen, S. (2011). Re-extraction, recovery, and characteristics of skin gelatin from farmed giant catfish. Food and Bioprocess Technology. doi:10.1007/s11947-010-0408-3.

  • Sarabia, A. I., Gómez-Guillén, M. C., & Montero, P. (2000). The effect of added salt on the viscoelastic properties of fish skin gelatin. Food Chemistry, 70(1), 71–76.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Cremer, P. S. (2006). Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology, 10, 658–663.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by Ajinomoto, Limeira (SP), for supplying the enzyme transglutaminase ACTIVA MP®; and Embrapa–Agricultural Research Corporation, Embrapa Swine and Poultry, Concórdia (SC), for the lyophilizing of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre da Trindade Alfaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Trindade Alfaro, A., Fonseca, G.G. & Prentice-Hernández, C. Enhancement of Functional Properties of Wami Tilapia (Oreochromis urolepis hornorum) Skin Gelatin at Different pH Values. Food Bioprocess Technol 6, 2118–2127 (2013). https://doi.org/10.1007/s11947-012-0859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0859-9

Keywords

Navigation