Skip to main content
Log in

Non-destructive Estimation of Maize (Zea mays L.) Kernel Hardness by Means of an X-ray Micro-computed Tomography (μCT) Density Calibration

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

An X-ray micro-computed tomography (μCT) density calibration was constructed for whole maize (Zea mays L.) kernels from polymers ranging in absolute densities from 0.9 to 2.2 g cm−3. The resulting linear equation was used to estimate the densities of two regions-of-interest, i.e. vitreous and floury endosperm, as well as that of the entire maize kernel. The sample set comprised 16 maize kernels (eight hard and eight soft). Validation of the entire kernel density was performed by comparing estimated and measured (actual) masses (r = 0.99; standard error of measurement = 0.01 g). In addition, percentage cavity (%cavity) and percentage porosity (%porosity) were quantified from the X-ray images. As determined with analysis of variance, floury, vitreous and entire kernel endosperm densities as well as %cavity and %porosity significantly (P < 0.05) contributed to the variation within the hardness classes. Hardness classification was attempted using a receiver operating characteristic curve. Threshold values of 1.48, 1.67 and 1.30 g cm−3 were determined for the entire kernel, vitreous and floury endosperm densities, respectively, at a maximum of 100 % sensitivity and specificity. Classification was possible from %porosity values of the entire kernel, which are easier to determine, at 88 % accuracy. Efficient maize kernel hardness classification is required by the dry-milling industry when maize is milled into a meal and used as a food source. Optimum quality and yield can only be obtained during the milling process if maize of appropriate hardness is used as raw material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AACC (1999). Approved methods of analysis, 11th Ed. Method 55-30.01. Particle Size Index for Wheat Hardness. Approved November 3, 1999. (Vol. Method 55-30.01). AACC International: St. Paul, MN, USA.

  • Almeida-Dominguez, H. D., Suhendro, E. L., & Rooney, L. W. (1997). Factors affecting Rapid Visco Analyser curves for the determination of maize kernel hardness. Journal of Cereal Science, 25(1), 93–102. doi:10.1006/jcrs.1996.0072.

    Article  Google Scholar 

  • Blandino, M., Mancini, M. C., Peila, A., Rolle, L., Vanara, F., & Reyneri, A. (2010). Determination of maize kernel hardness: comparison of different laboratory tests to predict dry milling performance. Journal of the Science of Food and Agriculture, 90(11), 1870–1878.

    CAS  Google Scholar 

  • Burch, S. (2002). Measurement of density variations in compacted parts using X-ray computerised tomography. Metal Powder Report, 57(2), 24–28. doi:10.1016/S0026-0657(02)85009-3.

    Article  Google Scholar 

  • Chaunier, L., Della Valle, G., & Lourdin, D. (2007). Relationships between texture, mechanical properties and structure of cornflakes. Food Research International, 40(4), 493–503. doi:10.1016/j.foodres.2006.07.014.

    Article  Google Scholar 

  • Chawanji, A. S., Baldwin, A. J., Brisson, G., & Webster, E. (2012). Use of X-ray micro tomography to study the microstructure of loose-packed and compacted milk powders. Journal of Microscopy, 248(1), 49–57. doi:10.1111/j.1365-2818.2012.03649.x.

    Article  CAS  Google Scholar 

  • De Carvalho, M. L. M., Van Aelst, A. C., Van Eck, J. W., & Hoekstra, F. A. (1999). Pre-harvest stress cracks in maize (Zea mays L.) kernels as characterized by visual, X-ray and low temperature scanning electron microscopical analysis: effect on kernel quality. Seed Science Research, 9, 227–236.

    Google Scholar 

  • Delcour, J., & Hoseney, R. C. (2010). Principles of cereal science and technology (3rd ed.). Minnesota: AACC International Press.

    Book  Google Scholar 

  • Donis-González, I. R., Guyer, D. E., Pease, A., & Barthel, F. (2014). Internal characterisation of fresh agricultural products using traditional and ultrafast electron beam X-ray computed tomography imaging. Biosystems Engineering, 117, 104–113.

    Article  Google Scholar 

  • Du Plessis, A., Meincken, M., & Seifert, T. (2013). Quantitative determination of density and mass of polymeric materials using microfocus computed tomography. Journal of Nondestructive Evaluation, 1-5, doi:10.1007/s10921-013-0195-7.

  • Erasmus, C. (2003). Maize kernel translucency measurement by image analysis and its relationship to vitreousness and dry milling performance. PhD, University of Pretoria, Pretoria, South Africa

  • Eyherabide, G. H., Robutti, J. L., & Borras, F. S. (1996). Effect of near-infrared transmission-based selection on maize hardness and the composition of zeins. Cereal Chemistry, 73(6), 775–778.

    CAS  Google Scholar 

  • Fox, G., & Manley, M. (2009). Hardness methods for testing maize kernels. Journal of Agricultural and Food Chemistry, 57(13), 5647–5657. doi:10.1021/jf900623w.

    Article  CAS  Google Scholar 

  • Frisullo, P., Laverse, J., Marino, R., & Nobile, M. A. D. (2009). X-ray computed tomography to study processed meat microstructure. Journal of Food Engineering, 94(3–4), 283–289. doi:10.1016/j.jfoodeng.2009.03.020.

    Article  Google Scholar 

  • Gondek, E., Jakubczyk, E., Herremans, E., Verlinden, B., Hertog, M., Vandendriessche, T., et al. (2013). Acoustic, mechanical and microstructural properties of extruded crisp bread. Journal of Cereal Science, 58(1), 132–139.

    Article  Google Scholar 

  • Gustin, J. L., Jackson, S., Williams, C., Patel, A., Armstrong, P. R., Peter, G. F., et al. (2013). Analysis of maize (Zea mays) kernel density and volume using micro-computed tomography and single-kernel near infrared spectroscopy. Journal of Agricultural and Food Chemistry, 61, 10872–10880.

    Article  CAS  Google Scholar 

  • Huber, K. C., & BeMiller, J. N. (2000). Channels of maize and sorghum starch granules. Carbohydrate Polymers, 41(3), 269–276.

    Article  CAS  Google Scholar 

  • Kak, A. C., & Slaney, M. (1988). Principles of computerized tomographic imaging. New York: IEEE Press.

    Google Scholar 

  • Kotwaliwale, N., Singh, K., Kalne, A., Jha, S. N., Seth, N., & Kar, A. (2011). X-ray imaging methods for internal quality evaluation of agricultural produce. Journal of Food Science and Technology, 51(1), 1–15.

    Article  Google Scholar 

  • Laverse, J., Mastromatteo, M., Frisullo, P., Albenzio, M., Gammariello, D., & Del Nobile, M. A. (2011a). Fat microstructure of yogurt as assessed by X-ray microtomography. Journal of Dairy Science, 94(2), 668–675. doi:10.3168/jds. 2010-3672.

    Article  CAS  Google Scholar 

  • Laverse, J., Mastromatteo, M., Frisullo, P., & Del Nobile, M. A. (2011b). X-ray microtomography to study the microstructure of cream cheese-type products. Journal of Dairy Science, 94(1), 43–50. doi:10.3168/jds.2010-3524.

    Article  CAS  Google Scholar 

  • Laverse, J., Mastromatteo, M., Frisullo, P., & Del Nobile, M. A. (2012). X-ray microtomography to study the microstructure of mayonnaise. Journal of Food Engineering, 108(1), 225–231. doi:10.1016/j.jfoodeng.2011.07.037.

    Article  Google Scholar 

  • Lee, K. M., Bean, S. R., Alavi, S., Herrman, T. J., & Waniska, R. D. (2006). Physical and biochemical properties of maize hardness and extrudates of selected hybrids. Journal of Agricultural and Food Chemistry, 54(12), 4260–4269.

    Article  CAS  Google Scholar 

  • Lee, K. M., Herrman, T. J., Rooney, L. W., Jackson, D. S., Lingenfelser, J., Rausch, K. D., et al. (2007). Corroborative study on maize quality, dry-milling and wet-milling properties of selected maize hybrids. Journal of Agricultural and Food Chemistry, 55(26), 10751–10763. doi:10.1021/jf071863f.

    Article  CAS  Google Scholar 

  • Lindgren, O., Davis, J., Wells, P., & Shadbolt, P. (1992). Non-destructive wood density distribution measurements using computed tomography. Holz als Roh-und Werkstoff, 50(7–8), 295–299.

    Article  Google Scholar 

  • McGoverin, C., & Manley, M. (2012). Classification of maize kernel hardness using near infrared hyperspectral imaging. Journal of Near Infrared Spectroscopy, 20, 529–535.

    Article  CAS  Google Scholar 

  • Meincken, M., & du Plessis, A. (2013). Visualising and quantifying thermal degradation of wood by computed tomography. European Journal of Wood and Wood Products, 71(3), 387–389.

    Article  Google Scholar 

  • Mestres, C., Louis-Alexandre, A., Matencio, F., & Lahlou, A. (1991). Dry-milling properties of maize. Cereal Chemistry, 68(1), 51–56.

    Google Scholar 

  • O’Kennedy, K. (2011). Characterisation of zein from South African maize of varying endosperm texture. Masters Thesis, Stellenbosch University, South Africa.

  • Pomeranz, Y., Martin, C. R., Traylor, D. D., & Lai, F. S. (1984). Corn hardness determination. Cereal Chemistry, 61(2), 147–150.

    Google Scholar 

  • Robutti, J. L., Hoseney, R. C., & Wassom, C. E. (1974). Modified opaque-2 corn endosperms. ll. Structure viewed with a scanning electron microscope. American Association of Cereal Chemists, 51, 173-180.

  • Robutti, J. L., Borras, F. S., & Eyherabide, G. H. (1997). Zein compositions of mechanically separated coarse and fine portions of maize kernels. Cereal Chemistry, 74(1), 75–78.

    Article  CAS  Google Scholar 

  • Singhal, A., Grande, J. C., & Zhou, Z. (2013). Micro/nano CT for visualization of internal structures. Microscopy Today, 21(02), 16–22.

    Article  CAS  Google Scholar 

  • Sinka, I. C., Burch, S. F., Tweed, J. H., & Cunningham, J. C. (2004). Measurement of density variations in tablets using X-ray computed tomography. International Journal of Pharmaceutics, 271(1–2), 215–224. doi:10.1016/j.ijpharm.2003.11.022.

    Article  CAS  Google Scholar 

  • Van Dalen, G., Nootenboom, P., & Van Vliet, L. J. (2007). 3D Imaging and analysis of porous cereal products using X-ray microtomography. Paper presented at the The 12th International Congress for Stereology (ICSXII), 2007, Saint-Etienne, France, September 3-7, 2007.

  • Watson, S. A. (1987). Structure and composition. In S. A. Watson & P. E. Ramstad (Eds.), Corn chemistry and technology (pp. 53–82). St. Paul: American Association of Cereal Chemists, Inc.

    Google Scholar 

  • Williams, P., Geladi, P., Fox, G., & Manley, M. (2009). Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. Analytica Chimica Acta, 653(2), 121–130.

    Article  CAS  Google Scholar 

  • Wu, Y. V. (1992). Corn hardness as related to yield and particle size of fractions from a micro hammer-cutter mill. Cereal Chemistry, 69(3), 343–347.

    Google Scholar 

  • Wu, Y. V., & Bergquist, R. R. (1991). Relation of corn grain density to yields of dry-milling products. Cereal Chemistry, 68(5), 542–544.

    Google Scholar 

  • Zhu, L. J., Dogan, H., Gajula, H., Gu, M. H., Liu, Q. Q., & Shi, Y. C. (2012). Study of kernel structure of high-amylose and wild-type rice by X-ray microtomography and SEM. Journal of Cereal Science, 55(1):1–5. doi:10.1016/j.jcs.2011.08.013.

Download references

Acknowledgements

This work is based on research supported in part by the National Research Foundation of South Africa (Grant specific unique reference number (UID) 76641, 83974 and 88057). Gratitude goes to Stephan le Roux, Olwethu Majodina and Ayanda Myende for assistance with μCT data analysis. The authors acknowledged Sasko, a division of Pioneer Foods (Pty) Ltd (Paarl, South Africa), for donation of the Perten Laboratory Mill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marena Manley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guelpa, A., du Plessis, A., Kidd, M. et al. Non-destructive Estimation of Maize (Zea mays L.) Kernel Hardness by Means of an X-ray Micro-computed Tomography (μCT) Density Calibration. Food Bioprocess Technol 8, 1419–1429 (2015). https://doi.org/10.1007/s11947-015-1502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1502-3

Keywords

Navigation