Skip to main content
Log in

Volatile Compound Production During the Bread-Making Process: Effect of Flour, Yeast and Their Interaction

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Bread is one of the most consumed products around the world, justifying the continuous research and development activities on how to improve its sensory, chemical and industrial characteristics. Volatile organic compounds (VOCs) play a key role in this regard because they take shape during the leavening process and are enhanced upon baking. In this study, proton-transfer reaction mass spectrometry (PTR-MS), coupled to a time-of-flight (ToF) mass analyser, was undertaken in order to analyse the effects of Saccharomyces cerevisiae strains as well as the type of wheat flour used in the bread-making process on VOC production. The results showed a greater impact of yeast strains over the expected flour influence. This observation was confirmed when the leavened dough samples were baked and the volatile profiles determined. However, the peak-by-peak monitoring, followed by a tailored statistical approach, revealed not only the effect of changing ingredients but also different kinds of yeast/flour interaction. Such findings shed a new light on the selection of ingredients for each bread recipe depending on the desired volatile profile of the baked product and on the potential of PTR-MS in analysing protechnological microbes/matrix interaction during food fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Annett, L. E., Spaner, D., & Wismer, W. V. (2007). Sensory profiles of bread made from paired samples of organic and conventionally grown wheat grain. Journal of Food Science, 72(4), S254–S260.

    Article  CAS  Google Scholar 

  • Aprea, E., Biasioli, F., Märk, T. D., & Gasperi, F. (2007). PTR-MS study of esters in water and water/ethanol solutions: fragmentation patterns and partition coefficients. International Journal of Mass Spectrometry, 262(1–2), 114–121.

    Article  CAS  Google Scholar 

  • Ayuto, M., & Rohns, G. (1984). Formic acid in ginger bread--an adulterant? Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 179(3), 243–244.

    Article  CAS  Google Scholar 

  • Biasioli, F., Gasperi, F., Yeretzian, C., & Märk, T. D. (2011). PTR-MS monitoring of VOCs and BVOCs in food science and technology. TrAC, Trends in Analytical Chemistry, 30(7), 968–977.

    Article  CAS  Google Scholar 

  • Birch, A. N., Petersen, M. A., Arneborg, N., & Hansen, Å. S. (2013a). Influence of commercial baker’s yeasts on bread aroma profiles. Food Research International, 52(1), 160–166.

    Article  CAS  Google Scholar 

  • Birch, A. N., Petersen, M. A., & Hansen, Å. S. (2013b). Review: Aroma of wheat bread crumb. Cereal Chemistry Journal., 91(2), 105–114.

    Article  Google Scholar 

  • Birch, A. N., van den Berg, F. W. J., & Hansen, Ã. S. (2013c). Expansion profiles of wheat doughs fermented by seven commercial baker’s yeasts. Journal of Cereal Science, 58(2), 318–323.

    Article  Google Scholar 

  • Bowles, L. K. (1996). Amylolytic enzymes. Food Science and Technology (pp. 105–130). New York:Marcel Dekker.

    Google Scholar 

  • Boyacioglu, M., & D’Appolonia, B. (1994). Characterization and utilization of durum wheat for breadmaking. I. Comparison of chemical, rheological, and baking properties between bread wheat flours and durum wheat flours. Cereal Chemistry, 71(1), 21–27.

    CAS  Google Scholar 

  • Capozzi, V., Menga, V., Diges, A. M., De Vita, P., van Sinderen, D., Cattivelli, L., Fares, C., & Spano, G. (2011). Biotechnological production of vitamin B2-enriched bread and pasta. Journal of Agricultural and Food Chemistry, 59(14), 8013–8020.

    Article  CAS  Google Scholar 

  • Cappellin, L., Biasioli, F., Fabris, A., Schuhfried, E., Soukoulis, C., Märk, T. D., & Gasperi, F. (2010). Improved mass accuracy in PTR-TOF-MS: another step towards better compound identification in PTR-MS. International Journal of Mass Spectrometry, 290(1), 60–63.

    Article  CAS  Google Scholar 

  • Cappellin, L., Biasioli, F., Granitto, P. M., Schuhfried, E., Soukoulis, C., Costa, F., Märk, T. D., & Gasperi, F. (2011). On data analysis in PTR-TOF-MS: from raw spectra to data mining. Sensors and Actuators B: Chemical, 155(1), 183–190.

    Article  CAS  Google Scholar 

  • Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P. M., Soukoulis, C., Aprea, E., Märk, T. D., Gasperi, F., & Biasioli, F. (2012). On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry. Environmental Science and Technology, 46(4), 2283–2290.

    Article  CAS  Google Scholar 

  • Cauvain, S. P., & Young, L. S. (2001). Baking problems solved. Boca Raton:CRC Press.

    Book  Google Scholar 

  • Cho, I., & Peterson, D. (2010). Chemistry of bread aroma: a review. Food Science and Biotechnology, 19(3), 575–582.

    Article  CAS  Google Scholar 

  • Demirkesen, I., Sumnu, G., & Sahin, S. (2013). Quality of gluten-free bread formulations baked in different ovens. Food and Bioprocess Technology, 6(3), 746–753.

    Article  CAS  Google Scholar 

  • Di Monaco, R., Torrieri, E., Pepe, O., Masi, P., & Cavella, S. (2015). Effect of sourdough with exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) on sensory quality of bread during shelf life. Food and Bioprocess Technology, 8(3), 691–701.

    Article  Google Scholar 

  • Dueñas-Sánchez, R., Pérez, A. G., Codón, A. C., Benítez, T., & Rincón, A. M. (2014). Overproduction of 2-phenylethanol by industrial yeasts to improve organoleptic properties of bakers’ products. International Journal of Food Microbiology, 180, 7–12.

    Article  Google Scholar 

  • Erasmus, D. J., Merwe, G. K., & Vuuren, H. J. (2003). Genome‐wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Research, 3(4), 375–399.

    Article  CAS  Google Scholar 

  • Feldman, M., Levy, A. A., Fahima, T., & Korol, A. (2012). Genomic asymmetry in allopolyploid plants: wheat as a model. Journal of Experimental Botany, 63(14), 5045–5059.

    Article  CAS  Google Scholar 

  • Gassenmeier, K., & Schieberle, P. (1995). Potent aromatic compounds in the crumb of wheat bread (French-type) — influence of pre-ferments and studies on the formation of key odorants during dough processing. Zeitschrift fur Lebensmittel-Untersuchung und Forschung, 201(3), 241–248.

    Article  CAS  Google Scholar 

  • Gelinas, P. (2009). Inventions on baker’s yeast strains and specialty ingredients. Recent Patents on Food, Nutrition & Agriculture, 1(2), 104–132.

    Article  CAS  Google Scholar 

  • Gélinas, P. (2012). In search of perfect growth media for baker’s yeast production: mapping patents. Comprehensive Reviews in Food Science and Food Safety, 11(1), 13–33.

    Article  Google Scholar 

  • Gelinas, P., & Lachance, O. (1995). Development of fermented dairy ingredients as flavor enhancers for bread. Cereal Chemistry, 72(1), 17–21.

    CAS  Google Scholar 

  • Goesaert, H., Brijs, K., Veraverbeke, W. S., Courtin, C. M., Gebruers, K., & Delcour, J. A. (2005). Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science and Technology, 16(1–3), 12–30.

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal, B., Karhumaa, K., Jeppsson, M., & Gorwa-Grauslund, M. (2007). Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. In L. Olsson (Ed.), Biofuels, vol 108. Advances in biochemical engineering/biotechnology (pp. 147–177). Berlin: Springer.

    Google Scholar 

  • Hansen, Å., & Hansen, B. (1994). Influence of wheat flour type on the production of flavour compounds in wheat sourdoughs. Journal of Cereal Science, 19(2), 185–190.

    Article  CAS  Google Scholar 

  • Hebeda, R. (1996). Baked goods freshness: technology, evaluation, and inhibition of staling, vol 75. Boca Raton:CRC Press.

    Google Scholar 

  • Heenan, S. P., Dufour, J.-P., Hamid, N., Harvey, W., & Delahunty, C. M. (2009). Characterisation of fresh bread flavour: relationships between sensory characteristics and volatile composition. Food Chemistry, 116(1), 249–257.

    Article  CAS  Google Scholar 

  • Hui, Y. H. (2008). Bakery products: science and technology. Hoboken:John Wiley & Sons.

    Google Scholar 

  • Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R., Sulzer, P., & Märk, T. D. (2009). A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). International Journal of Mass Spectrometry, 286(2–3), 122–128.

    Article  CAS  Google Scholar 

  • Kiskini, A., Kapsokefalou, M., Yanniotis, S., & Mandala, I. (2012). Effect of iron fortification on physical and sensory quality of gluten-free bread. Food and Bioprocess Technology, 5(1), 385–390.

    Article  CAS  Google Scholar 

  • Kulp, K., & Lorenz, K. (2003). Handbook of dough fermentations, vol 127. Boca Raton:CRC Press.

    Book  Google Scholar 

  • Lindinger, W., Hansel, A., & Jordan, A. (1998). On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. International Journal of Mass Spectrometry and Ion Processes, 173(3), 191–241.

    Article  CAS  Google Scholar 

  • Makhoul, S., Romano, A., Cappellin, L., Spano, G., Capozzi, V., Benozzi, E., Märk, T. D., Aprea, E., Gasperi, F., El-Nakat, H., Guzzo, J., & Biasioli, F. (2014). Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters. Journal of Mass Spectrometry, 49(9), 850–859.

    Article  CAS  Google Scholar 

  • Martins, S. I. F. S., Jongen, W. M. F., & van Boekel, M. A. J. S. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science and Technology, 11(9–10), 364–373.

    Article  CAS  Google Scholar 

  • Mathewson, P. (2000). Enzymatic activity during bread baking. Cereal Foods World, 45(3), 98–101.

    Google Scholar 

  • Murata, M., Totsuka, H., & Ono, H. (2007). Browning of furfural and amino acids, and a novel yellow compound, furpipate, formed from lysine and furfural. Bioscience, Biotechnology, and Biochemistry, 71(7), 1717–1723.

    Article  CAS  Google Scholar 

  • Onishi, M., Inoue, M., Araki, T., Iwabuchi, H., & Sagara, Y. (2012). A PTR-MS-based protocol for simulating bread aroma during mastication. Food and Bioprocess Technology, 5(4), 1228–1237.

    Article  CAS  Google Scholar 

  • Paraskevopoulou, A., Chrysanthou, A., & Koutidou, M. (2012). Characterisation of volatile compounds of lupin protein isolate-enriched wheat flour bread. Food Research International, 48(2), 568–577.

    Article  CAS  Google Scholar 

  • Patel, B. K., Waniska, R. D., & Seetharaman, K. (2005). Impact of different baking processes on bread firmness and starch properties in breadcrumb. Journal of Cereal Science, 42(2), 173–184.

    Article  CAS  Google Scholar 

  • Poinot, P., Gl, A., Jl, G.-P., De, C., Fillonneau, C., Le Bail, A., & Prost, C. (2008). Influence of formulation and process on the aromatic profile and physical characteristics of bread. Journal of Cereal Science, 48(3), 686–697.

    Article  CAS  Google Scholar 

  • Purlis, E., & Salvadori, V. O. (2009). Modelling the browning of bread during baking. Food Research International, 42(7), 865–870.

    Article  CAS  Google Scholar 

  • Randez-Gil, F., Córcoles-Sáez, I., & Prieto, J. A. (2013). Genetic and phenotypic characteristics of baker’s yeast: relevance to baking. Annual Review of Food Science and Technology., 4, 191–214.

    Article  CAS  Google Scholar 

  • Rega, B., Al, G., Delarue, J., Maire, M., & Giampaoli, P. (2009). On-line dynamic HS-SPME for monitoring endogenous aroma compounds released during the baking of a model cake. Food Chemistry, 112(1), 9–17.

    Article  CAS  Google Scholar 

  • Romano, A., Capozzi, V., Spano, G., & Biasioli, F. (2015). Proton transfer reaction-mass spectrometry: online and rapid determination of volatile organic compounds of microbial origin. Applied Microbiology and Biotechnology, 99(9), 3787–3795. doi:10.1007/s00253-015-6528-y

  • Różyło, R. (2014). Effect of process modifications in two cycles of dough mixing on physical properties of wheat bread baked from weak flour. Food and Bioprocess Technology, 7(3), 774–783.

    Article  Google Scholar 

  • Salovaara, H., & Valjakka, T. (1987). The effect of fermentation temperature, flour type, and starter on the properties of sour wheat bread. International Journal of Food Science and Technology, 22(6), 591–597.

    Article  Google Scholar 

  • Sauer, M., Branduardi, P., Valli, M., & Porro, D. (2004). Production of l-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Applied and Environmental Microbiology, 70(10), 6086–6091.

    Article  CAS  Google Scholar 

  • Shevchenko, A., Yang, Y., Knaust, A., Thomas, H., Jiang, H., Lu, E., Wang, C., & Shevchenko, A. (2014). Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. Journal of Proteomics, 105, 363–371.

    Article  CAS  Google Scholar 

  • Soukoulis, C., Cappellin, L., Aprea, E., Costa, F., Viola, R., Märk, T., Gasperi, F., & Biasioli, F. (2013). PTR-ToF-MS, a novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: the case study of apple ripening. Food and Bioprocess Technology, 6(10), 2831–2843.

    Article  CAS  Google Scholar 

  • Steensels, J., Meersman, E., Snoek, T., Saels, V., & Verstrepen, K. J. (2014). Large-scale selection and breeding to generate industrial yeasts with superior aroma production. Applied and Environmental Microbiology, 80(22), 6965–6975.

    Article  CAS  Google Scholar 

  • Van Boekel M & Brands C (1998) Heating of sugar-casein solutions: isomerization and Maillard reactions. The Maillard Reaction in Foods and Medicine, 154–159.

  • Vernocchi, P., Ndagijimana, M., Serrazanetti, D., Gianotti, A., Vallicelli, M., & Guerzoni, M. E. (2008). Influence of starch addition and dough microstructure on fermentation aroma production by yeasts and lactobacilli. Food Chemistry, 108(4), 1217–1225.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of the Autonomous Province of Trento (PAT-ADP 2014) is acknowledged. Giuseppe Spano is supported by MIUR [PON02_00186_2937475] in the framework of the project named ‘Protocolli innovativi per lo sviluppo di alimenti funzionali’ [Pro.Ali.Fun.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Biasioli.

Electronic supplementary material

ESM 1.

(DOCX 50.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhoul, S., Romano, A., Capozzi, V. et al. Volatile Compound Production During the Bread-Making Process: Effect of Flour, Yeast and Their Interaction. Food Bioprocess Technol 8, 1925–1937 (2015). https://doi.org/10.1007/s11947-015-1549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1549-1

Keywords

Navigation