Skip to main content
Log in

Synergistic Effect and Mechanisms of Combining Ultrasound and Pectinase on Pectin Hydrolysis

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The current study aimed to investigate the synergistic effect of ultrasound and pectinase on pectin hydrolysis. Effects of ultrasound on the hydrolysis rate of pectin, enzymatic kinetics parameters and pectinase structures (determined by the DNS method, Michaelis–Menten equation, chemical reaction kinetics model, fluorescence spectroscopy and circular dichroism spectroscopy) were also studied in order to illuminate the mechanisms of the synergistic effect. The hydrolysis rate of pectin achieved maximum value with ultrasound treatment at 4.5 W mL−1 intensity and ultrasound time of 10 min, increasing by 32.59 % over the control. The optimum temperature for the hydrolysis reaction was 50 °C and kept unchanged with ultrasound treatment. Besides, the value of V max increased whereas K m decreased in the sonoenzymolysis reaction compared with that in the routine enzymolysis reaction. Results indicated that under ultrasound irradiation, pectin was hydrolyzed at an elevated rate and the pectinase exhibited stronger affinity to the substrate. Fluorescence spectra revealed that ultrasound favorably decreased the amount of tryptophan on the pectinase surface; while the far-UV circular dichroism spectra showed an increased fraction of β-sheet and a reduced fraction of random coil in the secondary conformation. Changes in the pectinase structures contributed to the enhancement of pectinase activity and the consequent promotion of the hydrolysis process. Results of pectin degradation kinetics certified the synergistic effect of ultrasound and pectinase at the temperature range of 20–50 °C, which were evidenced from the positive values of the synergistic coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bashari, M., Eibaid, A., Wang, J., Tian, Y., Xu, X., & Jin, Z. (2013). Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrasonics Sonochemistry, 20(1), 155–161.

    Article  CAS  Google Scholar 

  • Bashari, M., Abdelhai, M. H., Abbas, S., Eibaid, A., Xu, X., & Jin, Z. (2014). Effect of ultrasound and high hydrostatic pressure (US/HHP) on the degradation of dextran catalyzed by dextranase. Ultrasonics Sonochemistry, 21(1), 76–83.

    Article  CAS  Google Scholar 

  • Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4SI), 813–835.

    Article  CAS  Google Scholar 

  • Cho, S. W., Lee, S., & Shin, W. (2001). The X-ray structure of Aspergillus aculeatus polygalacturonase and a modeled structure of the polygalacturonase-octagalacturonate complex. Journal of Molecular Biology, 311(4), 863–878.

    Article  CAS  Google Scholar 

  • Cravotto, G., Binello, A., Di Carlo, S., Orio, L., Wu, Z., & Ondruschka, B. (2010). Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation. Environmental Science and Pollution Research, 17(3), 674–687.

    Article  CAS  Google Scholar 

  • Geng, M., & Thagard, S. M. (2013). The effects of externally applied pressure on the ultrasonic degradation of Rhodamine B. Ultrasonics Sonochemistry, 20(1), 618–625.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of cavitation in biochemical engineering/biotechnology. Biochemical Engineering Journal, 44(1), 60–72.

    Article  CAS  Google Scholar 

  • Joseph, C. G., Puma, G. L., Bono, A., & Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 16(5), 583–589.

    Article  CAS  Google Scholar 

  • Joseph, C. G., Puma, G. L., Bono, A., Taufiq-Yap, Y. H., & Krishnaiah, D. (2011). Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol. Desalination, 276(1-3), 303–309.

    Article  CAS  Google Scholar 

  • Ma, H., Huang, L., Jia, J., He, R., Luo, L., & Zhu, W. (2011). Effect of energy-gathered ultrasound on Alcalase. Ultrasonics Sonochemistry, 18(1), 419–424.

    Article  CAS  Google Scholar 

  • Ma, X., Wang, W., Zou, M., Ding, T., Ye, X., and Liu, D. (2015). Properties and structures of commercial polygalacturonase with ultrasound treatment: role of ultrasound in enzyme activation. RSC Advances.

  • Maxwell, E. G., Belshaw, N. J., Waldron, K. W., & Morris, V. J. (2012). Pectin—an emerging new bioactive food polysaccharide. Trends in Food Science & Technology, 24(2), 64–73.

    Article  CAS  Google Scholar 

  • Nachiappan, S., & Muthukumar, K. (2013). Treatment of pharmaceutical effluent by ultrasound coupled with dual oxidant system. Environmental Technology, 34(2), 209–217.

    Article  CAS  Google Scholar 

  • Niture, S. K., & Refai, L. (2013). Plant pectin: a potential source for cancer suppression. American Journal of Pharmacology and Toxicology, 8(1), 9.

    Article  CAS  Google Scholar 

  • Ortega, N., de Diego, S., Perez-Mateos, M., & Busto, M. D. (2004). Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food Chemistry, 88(2), 209–217.

    Article  CAS  Google Scholar 

  • Prajapat, A. L., Subhedar, P. B., & Gogate, P. R. (2016). Ultrasound assisted enzymatic depolymerization of aqueous guar gum solution. Ultrasonics Sonochemistry, 29, 84–92.

    Article  CAS  Google Scholar 

  • Sabarez, H., Oliver, C. M., Mawson, R., Dumsday, G., Singh, T., Bitto, N., McSweeney, C., & Augustin, M. A. (2014). Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff. Ultrasonics Sonochemistry, 21(6SI), 2084–2091.

    Article  CAS  Google Scholar 

  • Sharma, N., Rathore, M., & Sharma, M. (2013). Microbial pectinase: sources, characterization and applications. Reviews in Environmental Science and Biotechnology, 12(1), 45–60.

    Article  CAS  Google Scholar 

  • Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323–331.

    Article  CAS  Google Scholar 

  • Subhedar, P. B., & Gogate, P. R. (2013). Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Industrial & Engineering Chemistry Research, 52(34), 11816–11828.

    Article  CAS  Google Scholar 

  • Subhedar, P. B., & Gogate, P. R. (2014). Enhancing the activity of cellulase enzyme using ultrasonic irradiations. Journal of Molecular Catalysis B: Enzymatic, 101, 108–114.

    Article  CAS  Google Scholar 

  • Sun, Y., Ma, G., Ye, X., Kakuda, Y., & Meng, R. (2010). Stability of all-trans-beta-carotene under ultrasound treatment in a model system: effects of different factors, kinetics and newly formed compounds. Ultrasonics Sonochemistry, 17(4), 654–661.

    Article  CAS  Google Scholar 

  • van Pouderoyen, G., Snijder, H. J., Benen, J., & Dijkstra, B. W. (2003). Structural insights into the processivity of endopolygalacturonase I from Aspergillus niger. FEBS Letters, 554(3), 462–466.

    Article  Google Scholar 

  • van Santen, Y., Benen, J., Schroter, K. H., Kalk, K. H., Armand, S., Visser, J., & Dijkstra, B. W. (1999). 1.68-angstrom crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. Journal of Biological Chemistry, 274(43), 30474–30480.

    Article  Google Scholar 

  • Whitmore, L., & Wallace, B. A. (2008). Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers, 89(5), 392–400.

    Article  CAS  Google Scholar 

  • Xu, Y., Zhang, L., Bailina, Y., Ge, Z., Ding, T., Ye, X., & Liu, D. (2014). Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. Journal of Food Engineering, 126, 72–81.

    Article  CAS  Google Scholar 

  • Yachmenev, V., Condon, B., Klasson, T., & Lambert, A. (2009). Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound. Journal of Biobased Materials and Bioenergy, 3(1), 25–31.

    Article  CAS  Google Scholar 

  • Zhang, Y., Fu, E., & Liang, J. (2008). Effect of ultrasonic waves on the saccharification processes of lignocellulose. Chemical Engineering & Technology, 31(10), 1510–1515.

    Article  CAS  Google Scholar 

  • Zhang, L., Ye, X., Ding, T., Sun, X., Xu, Y., & Liu, D. (2013a). Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sonochemistry, 20(1), 222–231.

    Article  CAS  Google Scholar 

  • Zhang, L., Ye, X., Xue, S. J., Zhang, X., Liu, D., Meng, R., & Chen, S. (2013b). Effect of high-intensity ultrasound on the physicochemical properties and nanostructure of citrus pectin. Journal of the Science of Food and Agriculture, 93(8), 2028–2036.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (Project 31371872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhang, L., Wang, W. et al. Synergistic Effect and Mechanisms of Combining Ultrasound and Pectinase on Pectin Hydrolysis. Food Bioprocess Technol 9, 1249–1257 (2016). https://doi.org/10.1007/s11947-016-1689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1689-y

Keywords

Navigation