Skip to main content
Log in

Experimental design as a tool for the manufacturing of filtering media based on electrospun polyacrylonitrile/\(\upbeta \)-cyclodextrin fibers

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The aim of this work is the manufacturing of non-woven fabrics to be used as Filtering media. These fabrics were produced from polyacrilonitrile (PAN) and \(\upbeta \)-cyclodextrin (\(\upbeta \)-CD) solutions in dimethylsulfoxide using a horizontal electrospinning system with a flat collecting screen. The information from the experiments was statistically analyzed in order to define the process parameters (PAN concentration in solution, volumetric flow and applied voltage) needed for obtaining fibers with the smallest average diameters. First, PAN fibers were produced following a full factorial \(3^{3}\) experimental design and this information was used for preparing the corresponding Response Surfaces needed to define the best conditions for the production of PAN/\(\upbeta \)-CD nonwoven fabrics. The viscosity of the polymer solutions was analyzed using a rotational rheometer and a pseudoplastic behavior was observed, the diameter of the obtained nanofibers was determined using scanning electron microscopy. At the end, the polymer concentration (viscosity) and the volumetric flow rate were selected as the most statistically significant factors affecting the fiber diameter. Besides, uniform PAN and PAN/\(\upbeta \)-CD nanofibers with average fiber diameters between 200 and 500 nm were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)

    Article  Google Scholar 

  2. Hutten, I.M.: Handbook of nonwoven filter media. Elsevier (2007)

  3. Dalton, P.D., Grafahrend, D., Klinkhammer, K., Klee, D., Mller, M.: Electrospinning of polymer melts: phenomenological observations. Polymer 48, 6823–6833 (2007)

    Article  Google Scholar 

  4. Wang, X., Huang, Z.: Melt-electrospinning of PMMA. Chin. J. Polym. Sci. 28, 45–53 (2010)

    Article  Google Scholar 

  5. Nayak, R., Kyratzis, I.L., Truong, Y.B., Padhye, R., Arnold, L.: Melt-electrospinning of polypropylene with conductive additives. J. Mater. Sci. 47, 6387–6396 (2012)

    Article  Google Scholar 

  6. Ramakrishna, S.: An introduction to electrospinning and nanofibers. World Scientific, Singapore (2005)

    Book  Google Scholar 

  7. Deitzel, J.M., Kleinmeyer, J., Harris, D., Beck Tan, N.C.: The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42, 261–272 (2001)

    Article  Google Scholar 

  8. Bhardwaj, N., Kundu, S.C.: Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010)

    Article  Google Scholar 

  9. Luo, C.J., Nangrejo, M., Edirisinghe, M.: A novel method of selecting solvents for polymer electrospinning. Polymer 51, 1654–1662 (2010)

    Article  Google Scholar 

  10. Fischer, X., Nadeau, J.P.: Interactive Design: Then and Now. Research in Interactive Design, vol. 3, p. 15. Springer (2011)

  11. Yrdem, O.S., Papila, M., Mencelolu, Y.Z.: Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater. Des. 29, 34–44 (2008)

    Article  Google Scholar 

  12. Nasouri, K., Bahrambeygi, H., Rabbi, A., Shoushtari, A.M., Kaflou, A.: Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J. Appl. Polym. Sci. 126, 127–135 (2012)

    Article  Google Scholar 

  13. Ziabari, M., Mottaghitalab, V., Haghi, A.K.: A new approach for optimization of electrospun nanofiber formation process. Korean J. Chem. Eng. 27, 340–354 (2010)

    Article  Google Scholar 

  14. Vignes, R.: Dimethyl Sulfoxide (DMSO): a new clean, unique, superior solvent. American Chemical Society Annual Meeting. pp. 120 (2000)

  15. Kim, S.S., Lee, J.: Antibacterial activity of polyacrylonitrilechitosan electrospun nanofibers. Carbohydr. Polym. 102, 231–237 (2014)

    Article  Google Scholar 

  16. Gktepe, F.: Comparative analysis of various electrospinning methods of nanofibre formation. Fibers Text. East. Eur. 17, 13–19 (2009)

    Google Scholar 

  17. Gliciska, E., Gutarowska, B., Brycki, B., Kruciska, I.: Electrospun polyacrylonitrile nanofibers modified by quaternary ammonium salts. J. Appl. Polym. Sci. 128, 767–775 (2013)

    Article  Google Scholar 

  18. Kurban, Z., Lovell, A., Jenkins, D., Bennington, S., Loader, I., Schober, A., Skipper, N.: Turbostratic graphite nanofibres from electrospun solutions of PAN in dimethylsulphoxide. Eur. Polym. J. 46, 1194–1202 (2010)

  19. Lewandowski, A., Majchrzak, I.: Polyacrylonitrile-DMSO-AgClO4 solid polymer electrolyte. Electrochim. Acta. 42, 267–270 (1997)

    Article  Google Scholar 

  20. Nataraj, S.K., Yang, K.S., Aminabhavi, T.M.: Polyacrylonitrile-based nanofibersA state-of-the-art review. Prog. Polym. Sci. 37, 487–513 (2012)

    Article  Google Scholar 

  21. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  Google Scholar 

  22. Uyar, T., Havelund, R., Nur, Y., Balan, A., Hacaloglu, J., Toppare, L., Besenbacher, F., Kingshott, P.: Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment. J. Membr. Sci. 365, 409–417 (2010)

    Article  Google Scholar 

  23. Uyar, T., Besenbacher, F.: Electrospinning of cyclodextrin functionalized polyethylene oxide (PEO) nanofibers. Eur. Polym. J. 45, 1032–1037 (2009)

    Article  Google Scholar 

  24. Uyar, T., Havelund, R., Nur, Y., Hacaloglu, J., Besenbacher, F., Kingshott, P.: Molecular filters based on cyclodextrin functionalized electrospun fibers. J. Membr. Sci. 332, 129–137 (2009)

    Article  Google Scholar 

  25. Menges, G., Wortberg, F., Michaeli, W. Kunststoffe: 68–71 (1978)

  26. Montgomery, D.C., Runger, G.C.: Applied statistics and probability for engineers. Wiley, New York (2003)

    MATH  Google Scholar 

  27. Cramariuc, B., Cramariuc, R., Scarlet, R., Manea, L.R., Lupu, I.G., Cramariuc, O.: Fiber diameter in electrospinning process. J. Electrost. 71, 189–198 (2013)

    Article  Google Scholar 

  28. Jarusuwannapoom, T., Hongrojjanawiwat, W., Jitjaicham, S., Wannatong, L., Nithitanakul, M., Pattamaprom, C., Koombhongse, P., Rangkupan, R., Supaphol, P.: Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polym. J. 41, 409–421 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank to EAFIT University for the financial support of this research. Additionally, special acknowledgments are dedicated to professor Mauricio Arroyave and Aida Arnedo from EAFIT University for all the support for obtaining the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alvarez-Láinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noreña-Caro, D., Alvarez-Láinez, M. Experimental design as a tool for the manufacturing of filtering media based on electrospun polyacrylonitrile/\(\upbeta \)-cyclodextrin fibers. Int J Interact Des Manuf 10, 153–164 (2016). https://doi.org/10.1007/s12008-014-0241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-014-0241-4

Keywords

Navigation