Skip to main content
Log in

Preparation of Hyaluronic Acid Micro-Hydrogel by Biotin–Avidin-Specific Bonding for Doxorubicin-Targeted Delivery

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Hyaluronic acid is a naturally ionic polysaccharide with cancer cell selectivity. It is an ideal candidate material for delivery of anticancer agents. In this study, hyaluronic acid (HA) micro-hydrogel loaded with anticancer drugs was prepared by the biotin–avidin system approach. Firstly, carboxyl groups on HA were changed into amino groups with adipic acid dihydrazide (ADH) to graft with biotin by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride named as HA–biotin. When HA–biotin solution mixed with doxorubicin hydrochloride (DOX·HCl) was blended with neutravidin, the micro-hydrogels would be formed with DOX loading. If excess biotin was added into the microgel, it would be disjointed, and DOX will be released quickly. The results of the synthesis procedure were characterized by 1H-NMR and FTIR; ADH and biotin have been demonstrated to graft on the HA molecule. A field emission scanning electron microscope was used to observe morphologies of HA micro-hydrogels. Furthermore, the in vitro DOX release results revealed that the release behaviors can be adjusted by adding biotin. Therefore, the HA micro-hydrogel can deliver anticancer drugs efficiently, and the rate of release can be controlled by biotin-specific bonding with the neutravidin. Consequently, the micro-hydrogel will perform the promising property of switching in the specific site in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bae, K. H., Yoon, J. J., & Park, T. G. (2006). Fabrication of hyaluronic acid hydrogel beads for cell encapsulation. Biotechnology Progress, 22, 297–302.

    Article  CAS  Google Scholar 

  2. Jeon, O., Song, S. J., Lee, K. J., Park, M. H., Lee, S. H., Hahn, S. K., et al. (2007). Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydrate Polymers, 70, 251–257.

    Article  CAS  Google Scholar 

  3. Luo, Y., Ziebell, M. R., & Prestwich, G. D. (2000). A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules, 1, 208–218.

    Article  CAS  Google Scholar 

  4. Yadav, A. K., Mishra, P., & Agrawal, G. P. (2008). An insight on hyaluronic acid in drug targeting and drug delivery. Journal of Drug Targeting, 16, 91–107.

    Article  CAS  Google Scholar 

  5. Ossipov, D. A. (2010). Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opinion on Drug Delivery, 7, 681–703.

    Article  CAS  Google Scholar 

  6. Lee, H., Ahn, C. H., & Park, T. G. (2009). Poly [lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromolecular Bioscience, 9, 336–342.

    Article  CAS  Google Scholar 

  7. Park, W., Bae, B., Kim, Y. H., & Na, K. (2010). Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight. European Journal of Pharmaceutical Sciences, 40, 367–375.

    Article  CAS  Google Scholar 

  8. Cho, H. J., Yoon, I. S., Yoon, H. Y., Koo, H., Jin, Y. J., Ko, S. H., et al. (2012). Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials, 33, 1190–1200.

    Article  CAS  Google Scholar 

  9. Yadav, A. K., Mishra, P., Mishra, A. K., Jain, S., & Agrawal, G. P. (2007). Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 246–257.

    Article  CAS  Google Scholar 

  10. Vercruysse, K. P., Marecak, D. M., Marecek, J. F., & Prestwich, G. D. (1997). Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid. Bioconjugate Chemistry, 8, 686–694.

    Article  CAS  Google Scholar 

  11. Luo, Y., & Prestwich, G. D. (1999). Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjugate Chemistry, 10, 755–763.

    Article  CAS  Google Scholar 

  12. Prestwich, G. D., Marecak, D. M., Marecek, J. F., Vercruysse, K. P., & Ziebell, M. R. (1998). Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. Journal of Controlled Release, 53, 93–103.

    Article  CAS  Google Scholar 

  13. Xiong, M. P., Forrest, M. L., Angela, L., & Kwon, G. S. (2007). Biotin-triggered release of poly (ethylene glycol)-avidin from biotinylated polyethylenimine enhances in vitro gene expression. Bioconjugate Chemistry, 18, 746–753.

    Article  CAS  Google Scholar 

  14. Liu, Y., Liu, J., Xu, J., Feng, S., & Davis, T. P. (2010). Biodegradable PEG hydrogels cross-linked using biotin-avidin interactions. Australian Journal of Chemistry, 63, 1413–1417.

    Article  CAS  Google Scholar 

  15. MacKinnon, N., Guérin, G., Liu, B., Gradinaru, C. C., & Macdonald, P. M. (2009). Liposome–hydrogel bead complexes prepared via biotin–avidin conjugation. Langmuir, 25, 9413–9423.

    Article  CAS  Google Scholar 

  16. Kim, J., Nayak, S., & Lyon, L. A. (2005). Bioresponsive hydrogel microlenses. Journal of the American Chemical Society, 127, 9588–9592.

    Article  CAS  Google Scholar 

  17. Kim, J., Singh, N., & Lyon, L. A. (2007). Influence of ancillary binding and nonspecific adsorption on bioresponsive hydrogel microlenses. Biomacromolecules, 8, 1157–1161.

    Article  CAS  Google Scholar 

  18. Clapper, J. D., Pearce, M. E., Guymon, C. A., & Salem, A. K. (2008). Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications. Biomacromolecules, 9, 1188–1194.

    Article  CAS  Google Scholar 

  19. Segura, T., Anderson, B. C., Chung, P. H., Webber, R. E., Shull, K. R., & Shea, L. D. (2005). Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials, 26, 359–371.

    Article  CAS  Google Scholar 

  20. Jia, X., Yeo, Y., Clifton, R. J., Jiao, T., Kohane, D. S., Kobler, J. B., et al. (2006). Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules, 7, 3336–3344.

    Article  CAS  Google Scholar 

  21. Picotti, F., Fabbian, M., Gianni, R., Sechi, A., Stucchi, L., Bosco, M. (2012) Hyaluronic acid lipoate: synthesis and physicochemical properties. Carbohydrate polymers (in press).

  22. Su, W. Y., Chen, Y. C., & Lin, F. H. (2010). Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomaterialia, 6, 3044–3055.

    Article  CAS  Google Scholar 

  23. Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.

    Article  CAS  Google Scholar 

  24. Sun, H., Guo, B., Li, X., Cheng, R., Meng, F., Liu, H., et al. (2010). Shell-sheddable micelles based on dextran-SS-poly (ε-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Biomacromolecules, 11, 848–854.

    Article  CAS  Google Scholar 

  25. Speth, P., Van Hoesel, Q., & Haanen, C. (1988). Clinical pharmacokinetics of doxorubicin. Clinical Pharmacokinetics, 15, 15.

    Article  CAS  Google Scholar 

  26. Bosio, V. E., Machain, V., López, A. G., De Berti, I. O. P., Marchetti, S. G., Mechetti, M., et al. (2012). Binding and encapsulation of doxorubicin on smart pectin hydrogels for oral delivery. Applied Biochemistry and Biotechnology, 167, 1365–1376.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the National Natural Science Foundation of China (50903009), Jilin science & technology department, science and technology development project (20100115, 20070566) and Science & Technology Bureau of Changchun City project (08SF58) for financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Li, Y., Duan, Q. et al. Preparation of Hyaluronic Acid Micro-Hydrogel by Biotin–Avidin-Specific Bonding for Doxorubicin-Targeted Delivery. Appl Biochem Biotechnol 169, 239–249 (2013). https://doi.org/10.1007/s12010-012-9968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9968-1

Keywords

Navigation